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Abstract. We provide a detailed study of the phenomenology of orbifold compactifications of the heterotic
string within the context of supergravity effective theories. Our investigation focuses on those models where
the soft Lagrangian is dominated by loop contributions to the various soft supersymmetry breaking pa-
rameters. Such models typically predict non-universal soft masses and are thus significantly different from
minimal supergravity and other universal models. We consider the pattern of masses that are governed by
these soft terms and investigate the implications of certain indirect constraints on supersymmetric models,
such as flavor-changing neutral currents, the anomalous magnetic moment of the muon and the density of
thermal relic neutralinos. We also comment on the possible discovery of these models at the LHC. These
string-motivated models show a novel behavior that interpolates between the phenomenology of unified
supergravity models and models dominated by the superconformal anomaly.

PACS. 11.25.Wx; 12.60.Jv; 04.65.+e

1 Introduction

The recent interest in models where supersymmetry break-
ing is transmitted from a hidden sector to our observable
world via the superconformal anomaly [1–3] has served
as a reminder that there are occasions where working at
one-loop order is more than a theoretical luxury, but an
absolute necessity if one is to understand even the gross
features of some models. Recently, the complete one loop
supergravity correction to soft supersymmetry breaking
terms was obtained [4, 5], a subset of which are the afore-
mentioned “anomaly-mediated” terms. The broad features
of these corrections, in particular for gaugino masses, was
studied in a heterotic string context in [6]. In the current
work, we wish to study in greater detail the low energy phe-
nomenology of models based on orbifold compactifications
of the weakly-coupled heterotic string in which these loop
corrections are significant. To that extent we will choose
two “laboratories” in which tree-level soft supersymmetry
breaking terms are either absent or greatly suppressed.
Our first example will involve an observable sector in

whichthematterfieldsareassumedtobe fromtheuntwisted
sector of the orbifold compactification. In the event that
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supersymmetry breaking is transmitted by the compactif-
ication moduli Tα, whose vacuum expectation values de-
termine the size of the compact manifold, this model will
exhibit a no-scale pattern of soft terms with vanishing soft
supersymmetry breaking terms at tree-level. Clearly, the
phenomenology of suchmodels will depend critically on the
formof the loop inducedsoft terms. Indeed, the“sequestered
sector”models considered in [2] were of just such a form.
In our second example we will switch our focus to cases

in which it is the dilaton field S whose vacuum expectation
value determines the magnitude of the (unified) coupling
constant gSTR at the string scale that participates exclu-
sively in supersymmetry breaking. We will work in the
context of models in which string nonperturbative correc-
tions to the Kähler potential act to stabilize the dilaton
in the presence of gaugino condensation [7, 8]. Such theo-
ries predict a suppression of dilaton contributions to soft
terms relative to those of the supergravity auxiliary field—
thereby suppressing tree-level contributions to supersym-
metry breaking relative to certain loop contributions.
After describing our framework and introducing both

the tree-level and one loop soft supersymmetry breaking
terms in Sect. 2, we introduce the parameter space for our
two broad classes of models in Sect. 3. The subsequent sec-
tion describes the analysis tools that we employ and the
types of low-energy phenomena that we will study be-
fore describing the implications of low-energy experimental
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constraints on each of our models and possible particle dis-
covery at the LHC in Sect. 5.
In general, we find that these examples have a phe-

nomenology that combines the features of minimal su-
pergravity (mSUGRA) models with those of anomaly-
mediated models. Parameters related to the orbifold com-
pactification and the stabilization of string moduli inter-
polate between these regimes. These models are thus im-
portant for preparing for forthcoming LHC data, as the
challenges of the anomaly-mediated paradigm for hadron
colliders have mostly been probed only in the “minimal”
paradigm [9]. Our study is also a useful complement to
other recent studies of string-based phenomenology in-
spired by other constructions [10, 11]. Current observations
and particle mass limits from collider experiments already
shed light on the nature of moduli stabilization. Our re-
sults suggest that future discoveries of superpartners will
be likely to provide strong evidence in favor of one stabi-
lization mechanism or another in the context of weakly-
coupled heterotic string models.

2 The structure of heterotic orbifold models
at one loop

We work in a framework in which the chiral superfields
ZM can be divided into two classes: observable sector su-
perfields, denoted Zi, charged under the observable sector
gauge symmetries; and hidden sector superfields, denoted
Zn. Since our interest here is primarily on broad issues of
phenomenology, the hidden sector fields that we will con-
sider are the dilaton S in the chiral multiplet formulation
and the three diagonal Kähler moduli Tα.
In the orbifold compactifications that we study here,

the tree-level Kähler potential for the moduli and the mat-
ter superfields is known. For the moduli sector, we have

K(S, S;Tα, T
α
) = k(S+ S̄)−

3∑

α=1

ln
(
Tα+T

α
)
, (1)

where we prefer to leave the form of the dilaton Kähler
potential k unspecified at this point. Its precise form de-
pends on how one stabilizes the dilaton. We will return to
this issue when we discuss the dilaton-dominated scenario
in Sect. 3.2. As for the observable sector matter fields Zi

with modular weights nαi associated with each of the three
Tα, we assume a diagonal Kähler metric given by

Kij̄ = κi(Z
n)δij +O(|Z

i|2) , (2)

with

κi(Z
n) =

∏

α

(Tα+T
α
)n
α
i . (3)

In the interests of simplicity, we assume that the three
Kähler moduli Tα can be treated as equivalent, so that

K(S, S;T, T ) = k(S+S)−3 ln(T +T ), κi = (T +T )
ni ,
(4)

where ni =
∑
α n
α
i .

The tree-level gauge kinetic functions fa(Z
n), one for

each gauge group Ga, are given in the weak coupling regime
by

f0a (Z
n) = S . (5)

Their vacuum expectation values give the associated gauge
couplings 〈Refa〉 = 1/g2a. To (5) will be added certain
string threshold corrections when we exhibit the one loop
soft supersymmetry breaking terms below.
The scalar potential, written in terms of auxiliary fields,

is given by the expression1

V =KIJF
IF
J̄
−
1

3
MM , (6)

with KIJ = ∂
2K/∂ZI∂Z

J̄
being the Kähler metric. The

fields F I in (6) are the auxiliary fields associated with the
chiral superfields ZI , while the fieldM is the auxiliary field
of the supergravity multiplet. Solving the equations of mo-
tion for these auxiliary fields yields

FM =−eK/2KMN
(
WN +KNW

)
, (7)

M =−3eK/2W , (8)

with KMN being the inverse of the Kähler metric. Note
that these expressions are given in terms of reduced Planck
mass units where we have set MPL/

√
8π = 1. The super-

gravity auxiliary field is related to the gravitino mass by

M3/2 =−
1

3

〈
M
〉
=
〈
eK/2W

〉
. (9)

We adopt the ansatz of Brignole et al. [12] in which one
assumes that the communication of supersymmetry break-
ing from the hidden sector to the observable sector occurs
through the agency of one of the moduli — in this case
either the dilaton S or the (universal) Kähler modulus T
— by the presence of a non-vanishing vacuum expectation
value of their auxiliary fields FS or FT . In principle, both
types of moduli could participate in supersymmetry break-
ing, and so one typically introduces a “Goldstino angle” θ
to parameterize the degree to which one sector or the other
feels the supersymmetry breaking. While this is a common
practice, all known explicit models of moduli stabilization
in the heterotic string context predict that this “angle” will
be some integer multiple of π/2; that is, only one of the two
classes of moduli participates in supersymmetry breaking.
If these are the only sectors with non-vanishing auxil-

iary fields in the vacuum, then the further requirement that
the overall vacuum energy at the minimum of the poten-
tial (6) be zero allows us to immediately identify (up to
phases, which we set to zero in what follows)

FS=−
1
√
3
Mk

−1/2
ss̄ sin θ =

√
3M3/2k

−1/2
ss̄ sin θ , (10)

FT=−
1
√
3
MK

−1/2
tt̄
cos θ =

√
3M3/2K

−1/2
tt̄
cos θ, (11)

where the last equality holds for the vacuum expectation
values, using (9) above. We should note that the condition

1 We will assume vanishing D-terms in what follows.
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of vanishing vacuum energy is a necessary one to employ
the above parameterization. In this work, we will avoid
discussing specific models of dynamical supersymmetry
breaking and moduli stabilization, but any such model
must include some mechanism for engineering a vanishing
vacuum energy in order to make contact with the results
presented here.

2.1 Modular invariance and tree-level supersymmetry
breaking terms

The soft supersymmetry breaking terms in string-derived
supergravity depend on the moduli through the observable
sector superpotential and this, in turn, is determined by
insisting on modular invariance of the low-energy effective
Lagrangian. The diagonal modular transformations

T →
aT − ib

icT +d
, ad− bc= 1, a, b, c, d ∈ Z (12)

leave the classical effective supergravity theory invariant,
though at the quantum level these transformations are
anomalous [13–16]. This anomaly is cancelled in the effect-
ive theory by the presence of a universal Green–Schwarz
counterterm and model-dependent string threshold correc-
tions [17, 18], which we describe below.
A matter field Zi of modular weight ni transforms

under (12) as

Zi→ (icT +d)niZi , (13)

while the Kähler potential of (4) undergoes a Kähler

transformation K →K+3(F +F ), with F = ln(icT +d),
under (12). Therefore, the classical symmetry will be pre-
served provided the superpotential transforms as [19]

W →W (icT +d)−3 . (14)

To ensure this transformation property, the superpotential
of string-derived models has a moduli dependence of the
form

Wijk = wijk [η(T )]
−2(3+ni+nj+nk) , (15)

where Wijk = ∂
3W (ZN )/∂Zi∂Zj∂Zk. The function η(T )

is the classical Dedekind eta function

η(T ) = e−πT/12
∞∏

n=1

(1− e−2πnT ) (16)

and it has a well-defined transformation under (12) given
by

η(T )→ (icT +d)1/2 η(T ) . (17)

We will also have to introduce the modified Eisenstein
function

G2 (t, t̄ )≡ 2ζ(t)+
1

t+ t̄
, where ζ(T ) =

1

η(T )

dη(T )

dT
,

(18)

which vanishes at the self-dual points t= 1 and t= eiπ/6.

We are now in a position to give the tree-level soft su-
persymmetry breaking terms. The tree-level gaugino mass
for canonically normalized gaugino fields is simply

M0a =
g2a
2
Fn∂nf

0
a . (19)

We define our trilinear A-terms and scalar masses for
canonically normalized fields by

VA =
1

6

∑

ijk

Aijke
K/2Wijkz

izjzk+ h.c.

=
1

6

∑

ijk

Aijke
K/2Wijk

ẑiẑj ẑk
√
κiκjκk

+ h.c. , (20)

where ẑi = κ
1/2
i z

i is a normalized scalar field, and by

VM =
∑

i

M2i κi|z
i|2 =

∑

i

M2i |ẑ
i|2 . (21)

With these conventions our tree-level expressions are

A0ijk =
〈
Fn∂n ln(κiκjκke

−K/Wijk)
〉
. (22)

(M0i )
2 =

〈
MM

9
−FnF

m̄
∂n∂m̄ lnκi

〉
. (23)

If we specialize now to the case of (10) and (11) with
moduli dependence given by (4), (5) and (15), then the
tree-level gaugino masses (19), A-terms (22) and scalar
masses (23) become

M0a =
g2a
2
FS

A0ijk = (3+ni+nj+nk)G2 (t, t̄ )F
T −kSF

S

(
M0i

)2
=
MM

9
+ni

|FT |2

(t+ t̄ )2
. (24)

The expressions in (24) are to be understood as vacuum
values, though we will drop the cumbersome brackets 〈. . .〉
from here onwards.
These tree-level soft terms have been studied exten-

sively in the past and we wish to understand what im-
pact the less-studied loop corrections can have on the phe-
nomenology of orbifold models. We can now appreciate
the importance of the two cases that we intend to study
in Sects. 3.1 and 3.2. In the case where the modular weights
of the observable sector are universally ni =−1, as would
be the case for the untwisted sector of orbifold compactifi-
cations, from (15) it is clear that the moduli do not couple
to the observable sector through the superpotential and
we have a true no-scale model. Indeed, substituting (11)
into (24), we find that if the dilaton does not participate
in supersymmetry breaking all (θ = 0) tree-level soft terms
are precisely zero in such a case. This is the situation that
we will investigate in Sect. 3.1.
Alternatively, if the dilaton is the primary source of su-

persymmetry breaking in the observable sector, loop-level
corrections to at least the trilinear A-terms and gaugino
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masses will continue to be important provided that the
magnitude of FS is suppressed relative to that of M , as
it is in models where nonperturbative corrections to the
Kähler potential are used to stabilize the dilaton [20]. In
such a scenario, the modular weights of the matter fields
are irrelevant at the tree-level, so we will continue to as-
sume ni =−1 for the sake of convenience when we inves-
tigate these models in Sect. 3.2. We thus need to turn our
attention to the study of soft supersymmetry breaking at
one loop.

2.2 General one loop corrections
to soft supersymmetry breaking

In this section, we aim to provide sufficient background
to justify the form of the one loop soft term expressions
that are our goal, as well as to explain some notation that
we will need for our phenomenological analysis. For more
complete explanations of what is contained in this section,
including expressions with arbitrary modular weights and
three independent Kähler moduli, the reader should con-
sult the precursor to this work [6].
We begin with gaugino masses that can be understood

as a sum of loop-induced contributions from the field the-
ory point of view, and terms that can be thought of as one
loop stringy corrections. The field theory loop contribution
can be derived completely from the superconformal ano-
maly and is given by [4, 21]

M1a |an =
g2a(µ)

2

[
2ba
3
M −

1

8π2

(
Ca−

∑

i

Cia

)

× FnKn−
1

4π2

∑

i

CiaF
n∂n lnκi

]
, (25)

where Ca, C
i
a are the quadratic Casimir operators for

the gauge group Ga in the adjoint representation and in
the representation of Zi, respectively, and ba is the beta-
function coefficient for the group Ga:

ba =
1

16π2

(
3Ca−

∑

i

Cia

)
. (26)

As mentioned in the previous section, one expects
modular anomaly cancellation to occur through a univer-
sal Green–Schwarz counterterm with group-independent
coefficient δGS. Such a term can be thought of as a loop
correction that contributes to gaugino masses in the form

M1a |GS =
g2a(µ)

2

2FT

(t+ t̄ )

δGS

16π2
. (27)

In addition, string threshold corrections generally appear
in the effective theory, which may be interpreted as one
loop corrections to the gauge kinetic functions of the form

f1a(Z
n) = ln η2(T )

[
δGS

16π2
+ ba

]
, (28)

which generate loop contributions to gaugino masses given
by

M1a |th =
g2a(µ)

2

[
δGS

16π2
+ ba

]
4ζ(t)FT . (29)

Putting together the tree-level gaugino mass with the loop
contributions (25), (27) and (29) gives

Ma =
g2a (µ)

2

{
2

[
δGS

16π2
+ ba

]
G2 (t, t̄ )F

T

+
2

3
baM +[1−2b

′
aks]F

S

}
, (30)

where we have defined the quantity

b′a =
1

16π2

(
Ca−

∑

i

Cia

)
. (31)

To understand the form of the one-loop A-terms and
scalar masses it is necessary to describe how field theory
loops are regulated in supergravity, seen as an effective the-
ory of strings. The regulation of matter and Yang–Mills
loop contributions to the matter wave function renormal-
ization requires the introduction of Pauli–Villars chiral
superfields ΦA = Φi, Φ̂i and Φa, which transform accord-
ing to the chiral matter, anti-chiral matter and adjoint
representations of the gauge group and have signatures
ηA =−1,+1,+1,, respectively. These fields are coupled to
the light fields Zi through the superpotential

W (ΦA, Zi) =
1

2
Wij(Z

k)ΦiΦj+
√
2ΦaΦ̂i(TaZ)

i+ · · · ,

(32)

where Ta is a generator of the gauge group, and their
Kähler potential takes the schematic form

KPV =
∑

A

κΦA(Z
N )|ΦA|2 , (33)

where the functions κA are a priori functions of the hidden
sector (moduli) fields. These regulator fields must be intro-
duced in such a way as to cancel the quadratic divergences
of the light field loops — and thus their Kähler potential is
determined relative to that of the fields that they regulate.
The PV mass for each superfield ΦA is generated by

coupling it to another field ΠA = (Πi, Π̂i,Πa) in the rep-
resentation of the gauge group conjugate to that of ΦA

through a superpotential term

Wm =
∑

A

µA(Z
N )ΦAΠA , (34)

where µA(Z
N ) can in general be a holomorphic function of

the light superfields. There is no constraint on the Kähler
potential for the fields ΠA as there was for that of the ΦA.
However, if we demand that our regularization preserve
modular invariance then we can determine the moduli de-
pendence of the regulator fields ΦA

⎧
⎪⎨

⎪⎩

Φi : κΦi = κi = (T +T )
ni ,

Φ̂i : κ̂Φi = κ
−1
i ,

Φa : κΦa = g
−2
a e

K = g−2a e
k(T +T )−3,

(35)
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and we can determine the moduli dependence of the super-
symmetric mass µA(Z

N ) in (34)

µA(Z
N ) = µA(S) [η(T )]

−2(3+nA+qA) , (36)

with nA and qA being the modular weights of the fields
ΦA and ΠA, respectively. Furthermore, we can postulate
the form of the moduli dependence of κA for the mass-
generating fields

ΠA : κΠA = hA(S+S)(T +T )
qA . (37)

So at this point the dilaton dependence in the superpoten-
tial term (34) and the functions hA, as well as the modu-
lar weights qA of the fields Π

A, are new free parameters
of the theory introduced at one loop as a consequence of
how the theory is regulated. Given (34), we can extract the
Pauli–Villarsmasses that appear as regulatormasses in the
logarithms at one loop

m2A = e
K
(
κΦA
)−1/2 (

κΠA
)−1/2

|µA|
2 , (38)

with mA = (mi, m̂i,ma) being the masses of the regulator
fields Φi, Φ̂i, Φa, respectively.
In terms of these regulator masses, the complete one

loop correction to the trilinear A-terms and scalar masses
in a general supergravity theory was given in [5]. In this
survey we will simplify the expressions and reduce the pa-
rameter space by making some reasonable assumptions.
Let us first assume that the functions µA(Z

N ) that ap-
pear in (34) and (38) are proportional to one overall Pauli–
Villars scale µPV, so that µ̂i = µa = µi ≡ µPV. This scale is
presumed to represent some fundamental scale in the un-
derlying string theory. Let us further assume that there is
no dilaton dependence of the PV masses so that hA(S+S)
is trivial and µPV is constant. With these simplifications
the complete trilinear A-term at one loop is given by

Aijk =
1

3
A0ijk−

1

3
γiM −G2 (t, t̄ )F

T

×

(
∑

a

γai pia+
∑

lm

γlmi plm

)
− ln[(t+ t̄ )|η(t)|4]

×

(
2
∑

a

γai piaM
0
a +

∑

lm

γlmi plmA
0
ilm

)

+2
∑

a

γaiM
0
a ln

(
µ2PV/µ

2
R

)

+
∑

lm

γlmi A
0
ilm ln

(
µ2PV/µ

2
R

)
+cyclic(ijk) , (39)

where we have defined the following combinations of modu-
lar weights from the Pauli–Villars sector

pij = 3+
1

2
(ni+nj+ qi+ qj) ,

pia =
1

2
(3+ qa+ q̂i−ni) , (40)

which we will refer to as “regularization weights” in refer-
ence to their origin from the PV sector of the theory.2

In (39) M0a and A
0
ilm are the tree-level gaugino masses

and A-terms given in (24) and the parameters γ determine
the chiral multiplet wave function renormalization

γji =
1

32π2

[
4δji

∑

a

g2a(T
2
a )
i
i− e

K
∑

kl

WiklW
jkl

]
.

(41)

We have implicitly made the approximation that genera-
tional mixing is unimportant and can be neglected in (39),
and this motivates the definitions

γji ≈ γiδ
j
i , γi =

∑

jk

γjki +
∑

a

γai ,

γai =
g2a
8π2
(T 2a )

i
i, γ

jk
i =−

eK

32π2
|Wijk |

2

κiκjκk
. (42)

The scalar masses are obtained similarly and take the form

(Mi)
2 = (M0i )

2+γi
MM

9

−
|FT |2

(t+ t̄ )2

⎛

⎝
∑

a

γai pai+
∑

jk

γjki pjk

⎞

⎠

+

⎧
⎨

⎩F
TG2 (t, t̄ )

⎛

⎝
∑

a

γai piaM
0
a +
1

2

∑

jk

γjki pjkA
0
jk

⎞

⎠

+
M

3

⎡

⎣
∑

a

γaiM
0
a +
1

2

∑

jk

γjki A
0
ijk

⎤

⎦+ h.c.

⎫
⎬

⎭

− ln
[
(t+ t̄ )|η(t)|4

]
{
∑

a

γai pia
[
3(M0a )

2− (M0i )
2
]

+
∑

jk

γjki pjk
[
(M0j )

2+(M0k)
2+(A0ijk)

2
]
⎫
⎬

⎭

+
∑

jk

γjki
[
(M0j )

2+(M0k)
2+(A0ijk)

2
]
ln(µ2PV/µ

2
R)

+
∑

a

γai
[
3(M0a )

2− (M0i )
2
]
ln(µ2PV/µ

2
R) , (43)

withM0i being the tree-level scalar masses of (24).
To put these expressions into a less cumbersome form,

we will consider the case where the various regularization
weights pia and pjk can be treated as one overall parame-
ter p. The adoption of one overall regularization weight p
makes it possible to identify the quantity

ln(µ2PV/µ
2
R)−p ln

[
(t+ t̄ )|η(t)|4

]
≡ ln(µ̃2PV/µ

2
R)

as a stringy threshold correction to the overall PV mass
scale, or effective cut-off, µPV. Then inserting the tree-level

2 Note that as we are considering the case with universal
modular weights ni =−1, these expressions can be reduced to
pij = 2+

1
2 (qi+ qj) and pia = 2+

1
2 (qa+ q̂i).
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soft terms (24) into (39) and (43) yields these soft terms in
the final form that we will use in the following analysis:

Aijk =−
ks

3
FS−

1

3
γiM −pγiG2 (t, t̄ )F

T

+ γ̃iF
S ln(µ̃2PV/µ

2
R)+cyclic(ijk) (44)

M2i =

{
|M |2

9
−
|FT |2

(t+ t̄ )2

}

×

⎡

⎣1+pγi−

⎛

⎝
∑

a

γai −2
∑

jk

γjki

⎞

⎠ ln(µ̃2PV/µ2R)

⎤

⎦

+(1−p)γi
|M |2

9
+

{
γ̃i
MFS

6
+ h.c.

}

+

{
pγ̃iG2 (t, t̄ )

F
T
FS

2
+ h.c.

}
+ |FS |2

×

⎡

⎣

⎛

⎝3
4

∑

a

γai g
4
a+ksks̄

∑

jk

γjki

⎞

⎠ ln(µ̃2PV/µ2R)

⎤

⎦ ,

(45)

where γ̃i is a shorthand notation for

γ̃i =
∑

a

γai g
2
a−ks

∑

jk

γjki . (46)

The one loop expressions of (30), (44) and (45) will be our
starting point in the following two sections where we in-
vestigate their phenomenological significance in scenar-
ios where tree-level soft supersymmetry breaking is sup-
pressed or vanishing.

3 Classification of heterotic orbifold models

As a result of the assumptions made in Sect. 2, our gen-
eral parameter space is defined by seven quantities, if we
assume a tree-level Kähler potential for the dilaton of
the form k(S, S) =− ln(S+S) with 〈s+ s̄〉= 2/g2STR � 4.
Three of these parameters represent scales: the gravitino
massM3/2, the boundary condition scale µUV at which the
soft supersymmetry breaking terms appear and the Pauli–
Villars cutoff scale µPV. The other four are parameters de-
scribing the moduli sector: the vacuum expectation value
of the real part of the (uniform) Kähler modulus 〈t+ t̄ 〉,
the modular weights of the PV regulators parameterized
by p, the value of the Green–Schwarz coefficient δGS and
the Goldstino angle θ that determines the degree to which
the dilaton and moduli F-terms participate in the trans-
mission of supersymmetry breaking.

3.1 Moduli dominated scenarios

This section assumes that i) all fields have modular weight
ni =−1, which gives a no-scale structure, and ii) we have
moduli-dominated supersymmetry breaking (θ vanishes,

cos θ = 1), so that the tree-level soft terms are precisely
zero. In addition, those loop-induced soft terms in (45) pro-
portional to tree level quantities are also zero, leaving only
those arising from the superconformal anomaly and those
related to the Pauli–Villars sector:

Ma =
g2a (µ)

2

{
2

[
δGS

16π2
+ ba

]
G2 (t, t̄ )F

T +
2

3
baM

}
,

Aijk =−
1

3
γiM −pγiG2 (t, t̄ )F

T +cyclic(ijk) ,

M2i = (1−p)γi
|M |2

9
. (47)

Note that in the special case where the moduli are stabi-
lized at one of their two self-dual points t= 1 and t= eiπ/6,
we recover the universal “anomaly mediated” results

Ma = g
2
a (µ) ba

M

3

Aijk =− (γi+γj+γk)
M

3

M2i = (1−p)γi
|M |2

9
. (48)

The scenario that has come to be referred to as the “ano-
maly mediated supersymmetry breaking” (AMSB) sce-
nario [1–3], in which scalar masses first appear only at
two loops, is obtained in the limit as the phenomenologi-
cal parameter p approaches unity. This would be the case,
for example, if the mass-generating Pauli–Villars fieldsΠA

had the same Kähler metric as the regulator fields ΦA and
thus qi =−1, q̂i = 1 and qa =−3. In any event, it is clear
that the parameter p defines a family of “anomaly medi-
ated” models for the case of moduli stabilized at self-dual
points. Importantly, for p < 1, as would be typical in orb-
ifold models, the anomaly-mediated masses for the matter
scalars are positive with only the Higgs fields having nega-
tive squared masses at the scale µUV.
The contrast between these results and those of the

standard AMSB case was discussed in [5, 6], but it is im-
portant to point out that the vanishing of the scalar masses
at one loop in the p→ 1 limit clearly demands a two-
loop analysis of these soft terms. A treatment of supergra-
vity radiative corrections, regularized by the Pauli–Villars
mechanism, at two loops would be a massive undertak-
ing. Some subset of these corrections would undoubtedly
be the soft terms found in [2, 3] using a spurion technique.
As is now well-known, these two-loop terms arising from
the superconformal anomaly would imply negative squared
masses for the scalar leptons. To remedy this situation, the
AMSB model, as it has been institutionalized in studies
such as the Snowmass Points and Slopes [22], adopts an
otherwise ad hoc scalar mass contribution that is universal
and sufficiently large. Not surprisingly, these models are of-
ten characterized as having light sleptons as a key feature
of the phenomenology.
While several extensions of the original (or “minimal”)

AMSB model now exist that address the slepton mass
problem in a variety of ways,3 the generalized anomaly me-

3 For some early solutions, see [23].
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diated model we present here suffers from no such problem
when p 	= 1. While the phenomenology associated with the
gaugino mass spectrum is familiar from past studies of the
AMSB paradigm, the scalar mass sector looks quite differ-
ent. We will begin our analysis in Sect. 5.2 with this gener-
alized anomaly mediated model (which we will refer to as
the “PV–AMSB model”) before enlarging the parameter
space to include all moduli-dominated models in Sects. 5.3
and 5.4.

3.2 Dilaton dominated scenarios
with Kähler suppression

We next turn to the opposite extreme, where the dila-
ton is the primary source of supersymmetry breaking in
the observable sector (sin θ = 1). In such a scenario we
would ordinarily expect the loop corrections such as those
in (25), (39) and (43) to be small perturbations on the
dominant (and universal) tree-level contributions and thus
safely neglected. The phenomenology of the dilaton domi-
nation scenario at tree-level has been extensively studied in
the literature [24].
The bulk of these studies, however, have considered

only the case of the standard Kähler potential k(S, S) =
− ln(S+S) derived from the tree-level string theory. It is
well-known that when this form is used, stabilizing the
dilaton at acceptable weak-coupling values is extremely
difficult. In the case where a dilaton potential is imagined
to arise through field theory nonperturbative effects (such
as gaugino condensation) it has been shown that one con-
densate alone can never succeed in stabilizing the dilaton
in such a way as to reproduce the weak coupling observed
in nature [25, 26]. Furthermore, while multiple condensates
can be used to provide the requisite stabilization [27, 28],
these models tend to predict a moduli-dominated scenario
such as those in Sect. 3.1.
In contrast, if one postulates a nonperturbative cor-

rection of stringy origin to the dilaton Kähler potential,
as was first motivated by Shenker [29], then one conden-
sate can indeed stabilize the dilaton at weak coupling while
simultaneously ensuring vanishing vacuum energy at the
minimum of the potential. The power of this approach was
first demonstrated in an explicit model of modular invari-
ant gaugino condensation in [7, 8] and confirmed in [30],
providing a concrete realization of the so-called “general-
ized dilaton domination scenario” [26].
The key feature of such models is the deviation of the

dilaton Kähler metric from its tree-level value. If we imag-
ine the superpotential for the dilaton having the form
W (S)∝ e−3S/2b+ , with b+ being the largest beta-function
coefficient (26) among the condensing gauge groups of the
hidden sector, then it is clear from (7) and (8) that requir-
ing the potential (6) to vanish implies

(kss̄)

∣∣∣∣ks−
3

2b+

∣∣∣∣
2

= 3→ (kss̄)−1/2 =
√
3

2
3b+

1− 23b+ks
.

(49)

The condition in (49) is independent of the means by which
the dilaton is stabilized and is a result merely of requir-
ing a vanishing vacuum energy in the limit of dilaton-
domination. The explicit model of [8], however, was able to
achieve precisely this relation with 〈ks〉=−g2STR/2, using
a correction to the dilaton action that involved tuningO(1)
numbers only.4

We can parameterize the departure that (49) repre-
sents from the tree-level Kähler metric

〈
(ktreess̄ )

1/2
〉
=

〈1/(s+ s̄)〉= g2STR/2� 1/4 by introducing the phenomeno-
logical parameter

anp ≡

(
ktreess̄
ktruess̄

)1/2
, (50)

so that the auxiliary field of the dilaton chiral supermulti-
plet can be expressed as

FS =
√
3M3/2(kss̄)

−1/2 =
√
3M3/2anp(k

tree
ss̄ )

−1/2 .

(51)

The importance of (49) for our purposes is to recognize
that the factor of b+, containing as it does a loop factor,
will suppress the magnitude of the auxiliary field FS rela-
tive to that of the supergravity auxiliary field M through
the relation (51). Therefore, tree-level soft terms for the
gaugino masses and trilinear A-terms will be of compara-
ble magnitude to the loop-induced soft terms arising from
the superconformal anomaly (though scalar masses will be
only negligibly altered from their tree level values). We are
thus led to consider the phenomenology of models given
by the following pattern of soft supersymmetry breaking
terms:

Ma =
g2a (µ)

2

{
2

3
baM +[1−2b

′
aks]F

S

}

Aijk =−
ks

3
FS−

1

3
γiM + γ̃iF

S ln(µ̃2PV/µ
2
R)+cyclic(ijk)

M2i =
|M |2

9

⎡

⎣1+γi−

⎛

⎝
∑

a

γai −2
∑

jk

γjki

⎞

⎠ ln(µ̃2PV/µ2R)

⎤

⎦

+

{
γ̃i
MFS

6
+ h.c.

}
, (52)

where we have dropped terms of O
(
1/(16π2)3

)
in the sca-

lar masses. These models will be studied in Sect. 5.5.

4 Experimental and cosmological constraints

In order to translate the spectra defined by the soft super-
symmetry breaking terms in Sects. 3.1 and 3.2, a low en-

4 In fact, the model considered in this reference used the
linear multiplet formalism for the dilaton in which such non-
perturbative corrections are more easily incorporated into the
low energy effective supergravity theory. For a description on
how to correctly translate from one formulation to the other,
see Appendix A of [6].
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ergy soft Lagrangian is obtained by solving the renormal-
ization group equations (RGEs) from some initial bound-
ary condition scale to the electroweak scale. Having thus
extracted the soft supersymmetry breaking parameters at
the low-energy scale, the physical mass spectra for the
superpartner and Higgs sector can be obtained and var-
ious direct collider constraints and indirect non-collider
constraints can be applied to examine the region of phe-
nomenological viability of these models. In this section, we
describe the tools that we use and the various observational
constraints that we impose.

4.1 Electroweak symmetry breaking
and physical masses

We have used the Fortran code SuSpect [31] to solve the
RGEs for the soft supersymmetry breaking parameters be-
tween the initial high energy scale µUV and the scale given
by the Z-bosonmass. While the initial scale µUV should it-
self be treated as a model-dependent parameter, we have
chosen µUV = µGUT throughout. We use tanβ and the sign
of the supersymmetric µ parameter in the superpotential
as free parameters, defined at the low-energy (electroweak)
scale.
The magnitude of the µ parameter is determined by

imposing electroweak symmetry breaking (EWSB) at the
scale defined by the geometric mean of the two stop masses
(mt̃1mt̃2)

1/2, which minimizes the one-loop scalar effective
potential [32, 33]. The one-loop corrected µ term is ob-
tained from the condition

µ̄2 =

(
m2Hd + δm

2
Hd

)
−
(
m2Hu + δm

2
Hu

)
tanβ

tan2 β−1
−
1

2
M2Z ,

(53)

where δm2Hu and δm
2
Hd
represent the one loop tad-

pole corrections to the running Higgs masses m2Hu and
m2Hd [34–36]. SuSpect includes the corrections from all
the third generation fermion and sfermion loops as well
as loops from gauge bosons, Higgs bosons, charginos and
neutralinos. As the superpartner spectrum depends on the
value of the µ parameter computed in (53), the proper
inclusion of superpartner thresholds in the RG evolution
requires that the procedure be iterated until a coherent and
stable value for µ is obtained. Usually, SuSpect requires
only two or three iterations to have a relative precision
of the order of 10−4. We have used three. The soft super-
symmetry breaking parameters at the weak scale are then
passed to the C code micrOMEGAs [37] to perform the
calculation of physical masses for the superpartners and
various indirect constraints, to be described in the follow-
ing section.
The specific algorithm that we employ can be described

as follows. The one-loop order SUSY breaking parame-
ters of the heterotic orbifold models obtained in the pre-
vious section are entered into SuSpect at the high energy
scale. Other parameters, including standardmodel fermion
masses and gauge weak couplings, as well as certain EWSB
parameters such as tanβ are input at the low energy scale.

SuSpect runs the renormalization group evolution of the
parameters back and forth between the low energy scales
such asMZ and the electroweak symmetry breaking scale,
and the high-energy scale such as the GUT scale. This is
the case for the soft SUSY-breaking terms (scalar and gau-
gino masses, bilinear and trilinear couplings and tan β)
and µ. This procedure has to be iterated in order to in-
clude SUSY threshold effects or radiative corrections due
to Higgs and SUSY particles. In the first step, these thresh-
olds are only guessed, since the spectrum has not been
calculated yet, and the radiative corrections are not imple-
mented. The thresholds are properly taken into account in
subsequent iterations. At the electroweak scale, the consis-
tency in the calculation of the µ term is checked using the
expression in (53). We then call micrOMEGAs, which cal-
culates the SUSY spectrum at one-loop order using Feyn-
Higgs for the Higgs sector. micrOMEGAs also calculates
the b→ sγ branching ratio, as well as the relic density of
the lightest neutralino and the anomalous magnetic mo-
ment of the muon. We have checked the consistency be-
tween the two spectra generated by SuSpect and by mi-
crOMEGAs: the maximum deviation was of the order of
4% and was confined to specific regimes such as high tanβ.
The first condition that we require on a given set of

soft supersymmetry breaking masses is that an appropri-
ate vacuum state appears — in particular that EWSB
occurs. Clearly it is possible for the value of µ2 in (53)
to become negative for a particular choice of model pa-
rameters. In such a situation EWSB does not occur. The
precise domain of parameter space where this occurs is sen-
sitive to the values of the Yukawa couplings — and hence
to the choice of quark pole masses assumed. This makes
the SUSY corrections to the bottom quark mass quite im-
portant. We have performed the analysis using the heavy
fermion masses in SuSpect of

Mt = 175.0GeV, Mb = 4.62GeV, Mτ = 1.778GeV ,
(54)

and gauge couplings at the Z-mass of

αMSEM (MZ) = 1/127.938, α
MS
s (MZ) = 0.118,

s̄2W = 0.23117 . (55)

We also reject all points in the parameter space that
give a tachyonic Higgs boson mass (in particular, where
m2A < 0) or negative sfermion squared masses.
We next require that the lightest supersymmetric par-

ticle (LSP) be neutral, and thus also reject all model pa-
rameters where the lightest neutralino χ̃01 is not the LSP.
In most of the rejected cases it is the lightest stau τ̃1 or
the gluino g̃ that becomes lighter than χ̃01. The remain-
ing parameter space is further reduced by limits on the
superpartner and Higgs masses from various collider ex-
periments.
Concerning the mass bounds that we use, we take

the most recent results combined by the LEP Working
Group [38,?]. For the light CP-even neutral Higgs mass
(mh), we assume that a 95% confidence level (CL) lower
limit on mh is set at 111.5GeV. The search for an invis-
ibly decaying Higgs boson in hZ production has allowed
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a 95% CL lower limit on mh to be set at 114.4GeV, as-
suming a production cross section equal to that in the
standard model and a 100% branching fraction to invisi-
ble decays [39]. We believe the value of 113.5GeV serves
as a good reference point, and this is the value we use
in our analysis. Concerning the chargino limit, we take
103.5GeV, bearing in mind that in some degenerate cases
and for light sleptons, the limit can go down to 88GeV [40].
For the squark sector, the limit of 97 GeV [41] is imple-
mented. For all mass bounds we should keep in mind that
experimental limits are always given in the context of
a particular SUSY model, which is not generally a string
motivated one. The bounds that we use could possibly be
weakened in some cases.

4.2 Indirect constraints on supersymmetric spectra

Various non-collider observations can be used to reduce the
allowed parameter space of these loop-dominated orbifold
models. We will focus our attention on the three such pro-
cesses that yield the most stringent constraints: the density
of relic neutralino LSPs, the branching ratio for decays in-
volving the process b→ sγ and the measurement of the
anomalous magnetic moment of the muon.

4.2.1 The relic neutralino density

The existence of dark matter is one of the first glimpses of
possible physics beyond the standard model. It is proba-
ble that dark matter consists of some stable or extremely
long-lived particle left over from the hot early universe.
For any given extension of the standard model containing
stable or long-lived particles, the present-day relic density
of such particles can prove quite constraining. The basic
calculation of a relic density from thermal considerations
is standard [42]. Here we review the steps in such a cal-
culation under the explicit assumption that the lightest
neutralino constitutes the cold dark matter particle.
The initial number density of the neutralino is deter-

mined because the particle is assumed to have been in
thermal equilibrium. When the particle begins in thermal
equilibrium with its surroundings, interactions that create
neutralinos usually happen as frequently as reverse inter-
actions that destroy neutralinos. Once the temperature
drops below T �mχ, most particles no longer have suf-
ficient energy to create neutralinos. Now neutralinos can
only annihilate, and these annihilations occur until about
the time when the Hubble expansion parameter becomes
larger than the annihilation rate, H ≥ Γann. When expan-
sion dwarfs annihilation, neutralinos are separated from
each other too quickly to maintain equilibrium. This hap-
pens at the freeze-out temperature, usually at TF �mχ/20
for cold dark matter.
In most neutralino relic density calculations, the only

interaction cross sections that need to be calculated are
annihilations of the type χχ→X, where χ is the lightest
neutralino and X is any final state involving only stan-
dard model particles. However, there are scenarios in which
other particles in the thermal bath have important ef-

fects on the evolution of the neutralino relic density. Such
a particle annihilates with the neutralino into standard
model particles and is called a coannihilator [43]. To serve
as an effective coannihilator, the particle must have dir-
ect interactions with the neutralino and must be nearly
degenerate in mass. Such degeneracy happens in MSSM,
for instance, with possible coannihilators being the light-
est stau [44], the lightest stop [45], the second-to-lightest
neutralino or the lightest chargino [46, 47]. When this de-
generacy occurs, the neutralino and all relevant coanni-
hilators form a coupled system. In this section, we will
denote particles belonging to that coupled system by χi.
Now all interactions involving particles in this coupled sys-
tem come into play, including χiχj →X, χiX→ χjY , and
χi→ χjX. Here both X and Y denote states including
standard model particles. Decays once again enter the cal-
culation because the coannihilators are generally not stable
and eventually decay into the lightest neutralino.
For the case without coannihilations, evolution of the

relic particle number density, n, happens in accordance
with the single species Boltzmann equation

dn

dt
=−3Hn−〈σv〉

[
n2− (neq)2

]
, (56)

where neq is the equilibrium number density,H is the Hub-
ble parameter at time t, and 〈σv〉 is the thermally averaged
annihilation cross section. The number density is modified
by Hubble expansion and by direct and inverse annihila-
tions of the relic particle. The relic particle is assumed to be
stable, so relic decay is neglected. In the above expression,
we have also assumed T invariance to relate annihilation
and inverse annihilation processes.
In the presence of coannihilators, the Boltzmann equa-

tion becomes more complicated but can be simplified using
the stability properties of the relic particle and the coanni-
hilators (using n=

∑N
i=1 ni). Application of these simplifi-

cations leads to

dn

dt
=−3Hn−

N∑

i,j=1

〈σijvij〉
(
ninj−n

eq
i n

eq
j

)
. (57)

To a very good approximation, one can use the usual
single species Boltzmann equation for the case of coanni-
hilations if the following replacement is made for the ther-
mally averaged cross section:

〈σv〉 =
∑

i,j

〈σijvij〉
neqi
neq
neqj
neq
. (58)

For scenarios involving coannihilations, the expression
for the thermally averaged cross section begins as a six-
dimensional integral, seven-dimensional including the in-
tegration over the final state angle. This integral has been
conveniently put into the form of a one-dimensional in-
tegral over the total squared center of mass energy [48].
Computer codes exist that numerically perform the center
of mass momentum integration and the final state angular
integration. Some codes include only a subset of all pos-
sible coannihilation channels [49, 50], while the program
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micrOMEGAs includes all relevant coannihilation chan-
nels. Analytical expressions for the cross sections after in-
tegration over the final state angle also exist in the litera-
ture [51]. In practice, the Boltzmann equation is generally
not given a full numerical treatment since accurate approx-
imate solutions exist [42].
Once the effective thermally averaged cross section has

been derived as a function of temperature, it is used to iter-
atively determine the freeze-out temperature. In practice,
the dimensionless inverse freeze-out temperature, xF =
mχ/TF, is calculated using

xF = ln

(
0.038gmPLmχ〈σv〉

√
g∗xF

)
. (59)

Here mPL is the Planck mass, g is the total number of de-
grees of freedom of the χ particle (spin, color, etc.), g∗ is the
total number of effective relativistic degrees of freedom at
freeze-out, and the thermally averaged cross section is eval-
uated at the freeze-out temperature. For most cold dark
matter candidates, xF � 20.
When the freeze-out temperature has been determined,

the total (co)annihilation depletion of the neutralino num-
ber density can be calculated by integrating the thermally
averaged cross section from freeze-out to the present tem-
perature (essentially T = 0). The thermally averaged cross
section appears in the formula for the relic density in the
form of the integral J (xF) =

∫∞
xF
〈σv〉x−2 dx:

Ωχh
2 = 40

√
π

5

h2

H20

s0

m3Pl

1(
g∗S/g

1/2
∗

)
J (xF)

. (60)

Here g∗S is the number of effective relativistic degrees
of freedom contributing to the entropy of the universe
and h is the reduced Hubble parameter, defined by H0 =
100 h km s−1Mpc−1. The above expression is commonly
given in the less explicit form:

Ωχh
2 =
1.07×109GeV−1

g
1/2
∗ mPLJ (xF)

. (61)

This is the expression that one compares with an experi-
mental determination of the dark matter abundance.
Recent evidence suggests [52] that Ωχ ∼ 0.3 with h2 ∼

0.5. We will take as a conservative favored region,

0.1<Ωχh
2 < 0.3 . (62)

The lower bound comes from the requirement that χ01
should at least form galactic dark matter, and the upper
bound is a very conservative interpretation of the lower
bound on the age of the Universe. Recently, WMAP [53]
has elegantly confirmed the composition of the Universe to
be 73% dark energy and 27% matter. WMAP determines
a total matter density ΩMh

2 = 0.135+0.008−0.009 and a total
baryon density ΩBh

2 = 0.0224± 0.0009, from which one
can extract a 2σ range for the density of cold dark matter:

ΩCDMh
2 = 0.1126+0.0161−0.0181. The effect of the WMAP meas-

urement has been studied in the case of neutralino dark
matter from mSUGRA [54] and rSUGRA [55] and also

in the case of scalar dark matter from ‘little Higgs’ the-
ories [56]. We use the more conservative numbers in (62)
in the figures to follow. However, we comment on the
changes if the WMAP results are applied. Let us stress
that the requirement of (62) should not be treated as a con-
straint, but rather as an indication of the region preferred
by cosmological considerations. Theoretical assumptions
made to extract the present relic density of neutralino
LSPs need not hold. In fact, the missing non-baryonic mat-
ter in the universe may not consist of relic neutralinos
at all.

4.2.2 The b→ sγ constraint

Another observable where the supersymmetric contribu-
tion can be important and measurable is the flavor chang-
ing decay b→ sγ [57]. In the standard model, this process
is mediated by virtual isospin +1/2 quarks andW -bosons.
In supersymmetric theories, the spectrum allows new con-
tributions involving loops of charginos and squarks or top
quarks and charged Higgs bosons. As these two contribu-
tions appear at the same order of perturbation theory, the
measurement of the inclusive decay B→Xsγ is a powerful
tool in the search for physics beyond the standard model.
For our analysis, we will use the results given by the CLEO
and BELLE collaborations [58].
The particle data group [59] summarizes these results

and gives the current limit as:

BR(b→ sγ) = (3.37±0.37±0.34±0.24+0.35−0.16±0.38) 10
−4 ,

(63)

where the three first errors represent, respectively, the
statistical errors, the systematic error, and the estimated
error on the model describing the behavior of the quarks
in the B-meson decay. The fourth uncertainty is the error
made by an extrapolation to the entire energy range for the
photon (cut at 2.1 GeV for the experiment). The last error
value is an estimate of the theoretical uncertainties. To be
as conservative as possible, one could add linearly all the
uncertainties of (63). However, we will adopt the procedure
taken in the recent benchmark study of Battaglia et al. [60]
and choose to impose the constraint

2.33×10−4<BR(b→ sγ)< 4.15×10−4 . (64)

Let us note that we perform these calculations under the
assumptions of minimal flavor violation.

4.2.3 The muon anomalous magnetic moment

The relation between the spin s of the muon and its mag-
netic moment µ is given classically by µ= gµ

eh̄
2mµc

s, where

gµ = 2(1+aµ). Following [61], we introduce the parame-
ter δµ to quantify the difference between theoretical and
experimental determinations of aµ:

δµ ≡ (aµ−11659000×10
−10)×1010 . (65)
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The Brookhaven collaboration has reported a measure-
ment of the anomalous magnetic moment of the muon [62]

(gexpµ −2)

2
= aexpµ = (11 659 202±14±6)×10−10 ,

(66)

where the first error is statistical uncertainty and the sec-
ond is systematic uncertainty. From this, the current ex-
perimental determination of the parameter δµ is δ

exp
µ =

203±8.
To understand the implications of this result for super-

symmetry, one needs to know the standard model contri-
bution. Unfortunately, the computation of δSMµ in the stan-
dard model is complicated by our poor understanding of
the hadronic contributions to certain vacuum polarization
diagrams. The theoretical result depends on whether one
uses the e+e− annihilation cross section or τ decay data to
estimate these contributions, and continues to change over
time as the calculation is refined [63]:

δexpµ − δSMµ = (22.1±7.2)10−10 [e+e−] (67)

δexpµ − δSMµ = (7.4±5.8)10−10 [τ -decay] , (68)

corresponding to a discrepancy between the standard
model prediction and experiment of, respectively, 1.9
and 0.7 standard deviations. In our discussion, we will
be less conservative than the authors of [61] and con-
sider a roughly three standard deviation region about the
anomalous moment of the muon based on the τ decay
analysis:

−11.6< δnew physicsµ = δexpµ − δSMµ < 30.4 [3 σ] .

(69)

The contribution of SUSY particles to the anomalous
moment of the muon mainly comes from neutralino-smuon
and chargino-sneutrino loop-induced processes. As the
chargino/slepton/lepton couplings have the same form as
the chargino/squark/quarkcouplings, the parameter space
restriction imposed by the constraint (69) will be similar
in many respects to the one given by the b→ sγ pro-
cess. Thus, the SUSY contribution to (gµ−2) is large for
large values of tanβ and small values of the soft-breaking
masses. It is interesting to note that the sign of the SUSY
contribution is equal to the sign of the µ parameter. With
our conventions this implies that positive µ is favored, as in
the b→ sγ constraint [57].
Let us briefly summarize the above-mentioned con-

straints that are to be applied below. First, we demand
that electroweak symmetry be correctly broken, as defined
by deriving a positive value for µ̄2 from (53). It should be
noted that we use parameters of the standard model as de-
fined in (54) and (55). Next, we demand that the mass of
the lightest scalar Higgs boson be greater than or equal to
113.5GeV. Additionally, we require that the mass of the
lightest chargino be greater than or equal to 103.5GeV.
We also require that the lightest slepton mass be larger
than 88GeV and the lightest squark mass be greater than
97 GeV, but these two scalar fermion mass limits exclude

no regions of parameter space in the plots resulting from
our analysis. We also indicate regions of parameter space
that result in the right thermal abundance of relic neu-
tralinos: 0.1 ≤ Ωχh2 ≤ 0.3. While we technically do not
exclude any regions solely for failing to produce the cos-
mologically preferred relic density, we do require that the
lightest neutralino be the LSP. In terms of the flavor chang-
ing decay b→ sγ, we take a conservative approach and
require the branching ratio to obey 2.33×10−4<BR(b→
sγ)< 4.15×10−4, given in (64). Finally, we follow the re-
cent τ decay analysis of the muon anomalous magnetic mo-
ment and require −11.6< δnew physicsµ < 30.4, given above
in (69).

5 Results and analysis

We are now in a position to investigate the way in which
low energy observations can distinguish different regions of
the weakly-coupled heterotic string parameter space. We
first recall the standard analysis in the context of the mini-
mal supergravity (mSUGRA) parameter space. While the
unified mSUGRA paradigm is unlikely to find a manifes-
tation in realistic string-based models, it nonetheless pro-
vides a useful benchmark for calibrating results from one
study to the next.

5.1 Revisiting mSUGRA

The minimal supergravity paradigm is based on the
assumption that the soft supersymmetry breaking La-
grangian is determined by only five parameters. These
include a universal gaugino mass M1/2, a universal sca-
lar mass M0 and a universal trilinear soft parameter A0,
as well as the sign of the µ parameter and tanβ. A quick
survey of the soft terms presented in Sect. 3 indicates that
there is no point in the parameter space of the string
models that we consider that generates such a universal
outcome. A unified scenario is possible only in the event
that the tree-level dilaton domination case arises [24],
though no explicit realization of this outcome exists in
a complete model. Even if such a scenario were realized, the
soft terms would be constrained to a particular point of the
mSUGRA parameter space such that

−A0 =M1/2 =
√
3M0 . (70)

Despite this lack of theoretical motivation, the extreme
simplicity of the mSUGRA approachmakes it an attractive
scenario for phenomenological study [64]. We will here just
present the main outcomes of our analysis. There are still
large areas of parameter space in the (M1/2,M0) plane that
are allowed, particularly for large tanβ where the Higgs
mass bound is less constraining. The constraint from the
process b→ sγ can be the dominant constraint for low gau-
gino masses. Nevertheless, it is never very severe for posi-
tive µ, even for high tanβ (note the change in scale in Fig. 2
relative to Fig. 1). The situation would change in the case
of large trilinear A-terms because of the possibility of light
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third generation squarks [45]. However, in this case, charge
and/or color breaking (CCB) problems often arise.
In both plots of Fig. 1 the exclusion regions for the

chargino and Higgs masses are given. These exclusion
regions implement the experimental limits of 103.5 and
113.5GeV, respectively, that were discussed in Sect. 4.1.
We also provide contours of constant Higgs mass of mh =
115.5GeV and 117GeV (the dashed lines from left to right)
as well as a contour of chargino massm

χ±1
= 500GeV (dot-

ted line). For small and moderate values of tanβ, the
requirement that the density of the lightest neutralino ac-
counts for the dark matter density is very constraining
and sensitive to the precise value of tanβ. For moderate
and low values of this parameter, one usually finds too
much relic density in the mSUGRA model. For example,
the “bulk” region at low scalar and gaugino masses is ex-
cluded by the Higgs mass limit. Only three regions survive:
a narrow band along the τ̃ -LSP exclusion zone, a large
Higgs pole region at extremely high tanβ, and the “focus
point” [65] region at high values ofM0 (the thin strip along
the “no EWSB” region in Fig. 2). The region next to the
τ̃ -LSP exclusion zone provides for efficient τ̃1χ̃

0
1 coannihi-

lation, considerably reducing the neutralino density. For
high values of tanβ, interesting areas exist where Ωχh

2

becomes smaller due to near-resonant s-channel annihila-
tion through the heavy Higgs states (A or H). Here mA
andmH become smaller and their couplings to the b quark

and the τ lepton increase. In this region χ̃01χ̃
0
1→ bb, τ

+τ−

dominates and causes significant depletion of the relic
density. This can clearly be seen in the plot for tanβ = 50.
It should be noted that these results are strongly depen-
dent on the treatment of the radiative correction for the
bottom mass and the Higgs masses. As stated earlier, we
have taken Mb = 4.62GeV. Small changes in these values
have dramatic consequences on the density. At large M0
and small M1/2 there is another region (the “focus point”

Fig. 1. Constraints on the mSUGRA parameter space for tanβ = 5 (left) and tanβ = 35 (right). Constraints on the (M1/2,M0)

mSUGRA plane are given for µ > 0 and A0 = 0. The red contours and shaded region represent the 0.1 <Ωχh
2 < 0.3 preferred

region. A small region at very low gaugino masses marked “EWSB” is ruled out by improper EWSB. Contours of constant Higgs
mass of mh = 115.5 GeV and 117 GeV (the dashed lines from left to right) as well as a contour of chargino mass mχ±1

= 500 GeV

(dotted line) are given. For a description of the experimental constraints applied, see Sect. 4

Fig. 2. Constraints on the mSUGRA parameter space for
tanβ = 50. Constraints on the (M1/2,M0) mSUGRA plane are
given for µ > 0 and A0 = 0. Note the change in scale relative
to Fig. 1. The red region represents the 0.1 <Ωχh

2 < 0.3 pre-
ferred region. The three shaded regions in the lower left are
excluded by (from left to right) the chargino mass limit, the
lightest Higgs boson mass limit and the b→ sγ rate

region) where the lightest neutralino as well as the lightest
chargino acquire relatively small mass and large Higgsino
components. The coupling to the bosonsW and Z is large
enough to make the annihilation process into WW or ZZ
efficient. If the WMAP measurement is used instead, then
the areas labeled “Ω” collapse to thin lines around the
lower value of Ωχh

2 = 0.1. In both of the figures, this value
prefers lower values of the mass parameters.
Our results are in agreement with the previous stud-

ies of mSUGRA [64]. The only discrepancies appear in the
high tanβ regimes, mostly due to the different treatment of
the b-quark mass and associated Yukawa coupling, and the
Higgs sector masses. These differences can be understood
in the light of the work done by Allanach et al. [66]. Indeed,
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Fig. 3. Constraints on the PV-AMSB parameter space for tanβ = 5 (left) and tan β = 35 (right). Constraints on the (M3/2, p)
plane are given for µ > 0. The regularization weight p can be as large as p= 1, at which point scalar masses vanish at the one loop
level (the standard AMSB limit). The areas marked Mχ and Mh are ruled out by the chargino mass bound and the Higgs mass
bound, respectively. The area marked b→ sγ gives Br(b→ sγ)≥ 4.15×10−4 (a small region where this bound is relevant occurs
near p= 1 for tanβ = 5). The horizontal (dotted) contour is a constant chargino mass of m

χ±1
= 130 GeV

the treatment of the Yukawa coupling of the b−quark (λb)
in SuSpect results in a higher value for λb than from the
other publicly available codes (a 4 to 8 percent effect). This
discrepancy affects the Higgs masses (mA in particular) via
the RGEs, which are dominated by λb for high tanβ. For
instance, for tanβ = 50, we can easily find a 20 to 50 GeV
difference for mA, explaining differences in the parameter
space allowed by the relic density in the A-pole sector. In
the remainder of our paper, we will restrict ourselves to
tanβ ≤ 35. In this range, the discrepancies between codes
are smaller than 3 percent. In terms of relic densities, the
differences between results using the codes DarkSusy [50]
and micrOMEGAs [37] come from both the b-mass treat-
ment and the selection of included coannihilation chan-
nels: previous versions of DarkSusy did not include any
coannihilation channels with sleptons and scalars while
micrOMEGAs does.5

To summarize, in the case of the mSUGRA model,
even if large areas of the (M1/2,M0) parameter space are
still allowed by present accelerator data, combining the
b→ sγ limits, the neutralino relic density constraints and
the Higgs mass limit selects the τ̃ coannihilation region,
the “focus point” region, or extremely high values of tanβ.
These three regions represent the extreme boundaries of
mSUGRA. Thus, it is natural go beyond mSUGRA to see
how these constraints affect orbifold models.

5.2 Moduli domination: the anomaly-mediated limit

The phenomenology of the original (minimal) AMSB
model has been extensively studied (for some of the earlier
work, see [67]). However, the phenomenology of the string-
based PV-AMSB model, defined by the soft terms given

5 The upcoming version of DarkSusy will include these coan-
nihilation channels.

in (48), has yet to be thoroughly explored. We view this
anomaly-dominated regime as a particular limit of string
models where supersymmetry is broken by the F-term of
some compactification modulus. Note that this anomaly-
mediated limit is one in which all tree-level soft supersym-
metry breaking terms vanish. We thus choose to begin our
study of string-based heterotic orbifold phenomenology at
one loop with this particularly simple regime.
Like the minimal AMSB scenario, the PV-AMSB

model has two free parameters, apart from tanβ and the
sign of the µ term. One parameter is the overall scale, given
by the gravitino mass M3/2 . The other parameter is the
regularization weight p that determines the size of the sca-
lar mass terms relative to the gaugino masses and A-terms.
In this sense, the weight p plays a role comparable to the
bulk M0 postulated in the minimal AMSB scenario, but
it is not an ad hoc parameter and it appears elsewhere in
the spectrum. Note, however, that the gaugino masses are
independent of this weight. Thus, achieving a sufficiently
heavy chargino implies a lower bound on the absolute scale
as displayed in Fig. 3.
If we look at the branching ratio b→ sγ, we observe

that it becomes important in two situations: small values
of the gravitino masses and/or large values of p. As previ-
ously mentioned, small gravitino masses give small values
of m

χ±1
, which leads to a big contribution of the diagram

involving χ±q̃ in the loop for b→ sγ. Having a large value
for p also leads to small squarkmasses and thus a large con-
tribution from the squark exchange diagrams. Moreover,

the same limit p→ 1 also leads to light χ̃03,4 , χ̃
±
2 , which can

now also contribute substantially to b→ sγ (because of the
small µ parameter).
Concerning the Higgs mass, our findings agree with

intuition gained from mSUGRA. One needs significant
loop contributions from relatively heavy squarks to sat-
isfy the LEP constraint, especially at low tanβ. Thus re-
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gions where squarks are light are ruled out. This includes
the region with p→ 1 and smaller gravitino mass scales.
In Fig. 3, we show the region excluded by our Higgs mass
constraint in the left plot, as well as a contour of mh =
114GeV for comparison. In the right plot for tanβ = 35
there is no constraint in this gravitino mass range arising
from the Higgs search limit, and we provide contours of
mh = 117GeV and 118GeV.
With regards to particle observability at the LHC, it

is also possible to make some general statements. Here
we follow the same guidelines as the authors of [68]. We
use masses of 2.5 TeV and lower for gluinos and 1st and
2nd generation squarks to denote possible detectability,
which occurs over large portions of the parameter space
that we study below. We also indicate regions where the
lightest stau has a mass below 200GeV, where observabil-
ity will be likely. In all of the allowed parameter space, the
lightest neutral Higgs boson will be detectable. Addition-
ally, the lighter neutralinos and charginos are also likely to
be detectable. Detectability of individual neutralinos and
charginos is a complicated issue depending not only on
kinematic accessibility, but also on branching ratios that
can vary significantly. Detailed analysis of such individual
detectability is beyond the scope of this work. Here we sim-
ply point out regions where some neutralinos and charginos
are light, lighter than about 250GeV. So, in this analy-
sis, the main tools of discrimination between the various
scenarios comes in detection of the gluino and scalar par-
ticles, mainly the lightest stau and the lightest up squark.
However, the discovery of the gluino is also quite likely
over all scenarios studied here, so its discriminatory value
is small. For both plots of Fig. 3, the gluino has a mass
below roughly 1 TeV, so it should be easily observable at
the LHC. The lightest stau is heavier than roughly 1 TeV
in both plots, therefore it is likely to be unobservable. In
the right plot, the lightest up squark drops below 2.5 TeV
next to the b→ sγ constraint line. Within this region (of a
width of approximately ∆p= 0.2), 1st and 2nd generation
squarks are likely to be observable. The lightest neutralino
and chargino are degenerate and their masses are always
below 150GeV in both plots, as can be deduced from the
chargino exclusion bound and the dotted line denoting
a chargino mass of 130GeV. The possible detectability of
1st and 2nd generation squarks is the main difference with
respect to the LHC between these two plots.
In comparing the two plots, other notable differences

come in the mass of the lightest Higgs and also in the im-
portance of the b→ sγ constraint. This is a relatively gen-
eral effect of raising tanβ from tanβ = 5 to tanβ = 35, and
will be seen throughout many of the plots in the remainder
of our paper.
In previous AMSB studies it was found that the neu-

tralino thermal relic density is generically too small to ex-
plain the amount of dark matter [69]. Due to the low ratio
ofM2/M1 in the AMSB scenarios, the wino content of the
LSP is quite high. Additionally, coannihilation between the
LSP and the lightest chargino is also very efficient. Both of
these effects combine to make the thermal relic density of
LSP negligible. Throughout the parameter space of Fig. 3
the thermal relic density is aroundΩχh

2 ∼ 10−4. Thus, the

anomaly-mediated character of the gaugino sector in this
model necessitates a non-thermal production mechanism
for neutralino LSPs, or another candidate for the cold dark
matter must be postulated.
We sum up these constraints in Fig. 4, where we have

shown the allowed region in the (p, tanβ) plane for a grav-
itino mass of M3/2 = 40TeV. We clearly see that the high
tanβ area is excluded by b→ sγ, and the low tanβ area is
disfavored because of the Higgs mass limit. In every case,
p cannot be too large (it must be less than ∼ 0.85). This
excludes the “minimal” AMSB scenario (p= 1) up to the
two-loop corrections to soft terms, which have not been
fully calculated in these string-based models. Most of the
interior of the parameter space in Fig. 4 has sufficiently
heavy Higgs masses, as shown by the dashed contours of
mh = 115.5GeV and 117GeV. The supersymmetric con-
tributions to the b→ sγ rate in the interior are small as
well. The solid contour is BR(b→ sγ) = 3.53×10−4. The
chargino masses are very light throughout and we have
provided contours ofm

χ±1
= 112.5GeV (right-most dotted

line) and 113.5GeV (left-most dotted line). We note that
much of this parameter space predicts a relatively small
supersymmetric contribution to the muon anomalous mag-
netic moment due to relatively heavy scalar masses (i.e.
δSUSYµ ∼ 0). The upper shaded region is ruled out by im-
proper electroweak symmetry breaking (µ2 < 0). As stated
previously, the gluino should be easily detectable at the
LHC over the entire allowed parameter space. In this fig-
ure, its mass is generally below 800GeV. Also, the sleptons
will be unobservable at the LHC due to their large mass.
In summary, the Pauli–Villars regularization weight p

generates a whole class of anomaly-dominated models at
the one-loop level. While this new degree of freedom solves
the tachyonic slepton problem, the minuscule relic dens-

Fig. 4. Constraints on the PV-AMSB parameter space for
M3/2 = 40 TeV. Constraints on the (p, tan β) plane are given
for µ > 0. Regions excluded by EWSB failure (top), exces-
sive rate for b→ sγ (right) and the Higgs mass limit (bot-
tom) are shaded . We have labeled contours of mh = 115.5 GeV
and 117 GeV (dashed lines), as well as unlabeled contours of
mχ±1

= 112.5 GeV and 113.5 GeV (dotted lines). The solid con-

tour in the lower left is a contour of BR(b→ sγ) = 3.53×10−4
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ity still does not allow the neutralino to be a thermal
dark matter candidate. Additionally, the constraints com-
ing from accelerator physics exclude high values of p and
low values of M3/2, and predict small contributions to the
muon anomalous magnetic moment.

5.3 The general moduli dominated case

We will now relax the assumption that the various Kähler
moduli are stabilized at self-dual points, while maintain-
ing the assumption that the modular weights of all matter
fields are equal and given by ni =−1. When the vacuum
value 〈Re t〉 is not fixed at 〈Re t〉= 1, we must use the soft
terms in (47). Note that the value of the Green–Schwarz
coefficient δGS becomes relevant for the determination of
gaugino masses in this case. For the time being we will take
δGS = 0 in order to keep the parameter space at a manage-
able size.
For the study of the moduli dominated case, we have

looked at the behavior of the model as a function of the
vacuum expectation value (vev) of the real part of the (uni-
versal) modulus field t= T |θ=0, for different values of p and
tanβ. To be more precise, we have taken two values of p,
0 and 0.95, and two values of tanβ, 5 and 35. We have
chosen to use the value p= 0.95, because at this value the
gaugino masses and scalar masses have roughly the same
magnitude. It is also very near the pure AMSB limit. We
first stress the common features of the moduli-dominated
case, and extract the corresponding phenomenological con-
sequences, before looking at specific points in the parame-
ter space.
We choose to investigate the region 0.1 ≤ 〈Re t〉 ≤ 5.

Since the vacuum value of this modulus is related to the
radius of the compact dimensions, negative values have no
physical meaning. Let us note that the combination (t+
t̄ )G2 (t, t̄ ), which appears in the gaugino mass when the
equation of motion (11) is substituted into (47), is invari-
ant (up to a sign) under the duality transformation t→ 1/t
as shown in Fig. 5. However, since this term competes with
the anomaly-mediated contribution to gaugino masses at
the one loop level, gaugino masses will not display this du-
ality symmetry. Any value 〈Re t〉 	= 1 represents a sponta-
neous breaking of modular invariance and the phenomenol-
ogy of the theory for 〈Re t〉 < 1 will be different from the
case 〈Re t〉> 1.
Looking again at the gaugino masses in (47), it is clear

that when δGS = 0, the gaugino masses are proportional
to beta-function coefficients. Thus, we expect the phe-
nomenology of this scenario to be very similar to that of the
PV-AMSB scenario of the previous section. For example,
we continue to have

M1

M2

∣∣∣∣
GUT

=
g1(µGUT)

g2(µGUT)

b1

b2
∼
b1

b2
=
33

5
= 6.6 (71)

independent of the value of 〈Re t〉 or p. At the low scale
this implies M2�M1 and the lightest neutralino χ01 and
the lightest chargino χ±1 are in a nearly complete Wino
state. This means that for all values of p and 〈Re t〉, we ex-
pect mχ01

�m
χ±1
�M2, and the relic density of the LSP

Fig. 5. Behavior of the combination (t+ t̄ )G2 (t, t̄ ) as a func-
tion of Re t

neutralino is almost entirely depleted by (co)annihilation
channels involving χ01 and χ

±
1 .

Unlike the case of Sect. 5.2, however, there is now
a value of 〈Re t〉, such that the contribution from the
Eisenstein function exactly counterbalances the contribu-
tion from the superconformal anomaly giving us vanishing
gaugino mass soft breaking terms Ma to this order. For
the choice of phase conventions in (7) and (8) this occurs
when6

(t+ t̄ )G2 (t, t̄ ) = 1→ ζ(t) = 0→ Re t= 0.523 . (72)

Not surprisingly, then, we find that much of the parame-
ter space in the vicinity of 〈Re t〉 = 0.5 is ruled out by the
chargino mass bounds for any reasonable choice of scale
M3/2 in Figs. 6 and 7.
In the extreme cases where 〈Re t〉 → 0.1 and 〈Re t〉 → 5,

the absolute value of the combination (t+ t̄ )G2 (t, t̄ ) be-
comes large and dominates over the anomaly contribution
in the gaugino masses. Here, gauginos will typically be
similar in size to the scalar masses at the high scale, par-
ticularly as the value of p is increased towards its limiting
value p= 1 (Fig. 7). The chargino mass bound is easily sat-
isfied here and the increased contribution from M3 in the
RG evolution of the scalar masses makes the Higgs mass
constraint easier to satisfy, particularly for large tanβ. In
Fig. 6, we show the Higgs and chargino exclusion regions
in the tanβ = 5 panel, and the contours mh = 115GeV
(dashed line) andm

χ±1
= 200GeV (dotted line). The Higgs

mass is not constraining at tanβ = 35, and we provide con-
tours of mh = 115GeV and 118GeV (dashed lines), and
againm

χ±1
= 200GeV (dotted line).

In terms of detectability at the LHC, the p= 0 plots in
Fig. 6 show some similarity to the anomaly mediated sce-
nario in the previous section. The gluino has a mass that
will allow future LHC detection over the bulk of the al-
lowed parameter space. The sleptons are far too heavy for

6 In [6] the same behavior was noted. In that reference, how-
ever, the opposite sign convention on (7) was used, leading to
vanishing gaugino masses when (t+ t̄ )G2 (t, t̄ ) =−1, which oc-
curs at the dual point Re t� 2.
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Fig. 6. Constraints on the moduli-dominated parameter space for tanβ = 5 (left) and tanβ = 35 (right) with p= 0. Constraints
on the (M3/2, 〈Re t〉) plane are given for δGS = 0 and µ > 0. The region in 〈Re t〉 shown here is 0.2 ≤ 〈Re t〉 ≤ 1. The areas
marked Mχ and Mh are ruled out by the chargino mass bound and the Higgs mass bound, respectively. Chargino masses of
m
χ±1
= 200 GeV (dotted line) are provided in both plots, while Higgs contours of mh = 115 GeV and 118 GeV (dashed lines) are

given where applicable

Fig. 7. Constraints on the moduli-dominated parameter space for tanβ = 5 (left) and tanβ = 35 (right) with p= 0.95. Con-
straints on the (M3/2, 〈Re t〉) plane are given for δGS = 0 and µ > 0. The shaded region in the upper right of the tan β = 35 plot
is excluded by CCB constraints, while the small shaded triangle in the lower left is excluded by improper EWSB. Chargino mass
contours of m

χ±1
= 200 GeV (dotted line) and Higgs mass contours of mh = 115 GeV (labeled dashed line) are given in both plots

detection. Since the lightest neutralino is very degenerate
with the lightest chargino, one can see by the dotted line
where they both acquire masses of 200GeV in both plots.
Higher masses can be interpolated also using the chargino
mass bound.
While the mass contours and exclusion regions in Fig. 6

show the underlying modular symmetry t→ 1/t in a very
broad sense, it is clear that these contours do not obey
this symmetry in the strict sense. We have indicated the
self-dual point 〈Re t〉= 1 by a heavy vertical line. The ex-
clusion regions do not show the expected duality symmetry
about this point. As already mentioned above, this is due
in large part to the competition between contributions to
the gaugino masses from the moduli sector and contribu-
tions from the superconformal anomaly. The relative sign

between these contributions depends on which side of the
self-dual point the (overall) modulus is stabilized. Having
chosen the conventions of (7), (19) and (20), this implies
a zero in the gaugino mass formula (30) on a definite side of
the self-dual point (with the conventions here, the smaller
value side). The conventions can be changed to make this
zero occur on the other side, but only at the expense of
changing the convention for the sign of the µ parameter. As
we keep this sign always fixed at positive values, the rela-
tive sign between the gaugino masses — in particular, the
gluino mass M3 — and the µ term is the key variable in
distinguishing the two sides of the self-dual point. This is
reflected in the fact that at tanβ = 35 in Fig. 6, the b→ sγ
constraint applies to only one side of the figure. Other ob-
servables, such as the muon anomalous magnetic moment,
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Fig. 8. Contours of relative running gaugino masses M3/M2
in the (〈Re t〉 , δGS) plane. These soft masses are at the initial
(GUT) scale. The heavy (dark) contour is the limit of vanishing
gluino mass (there is another such contour in the upper left cor-
ner on the other side of the self-dual point). For 〈Re t〉 > 1 we
also give contours of |M3/M2|= 0.33 (dashed) and 0.75 (solid)

will be sensitive to this relative sign as well, making any
spontaneous breaking of modular invariance a true observ-
able, at least in principle.7

In comparison with the earlier section, we can see that
a heavier lightest Higgs and heavier charginos are possible
when 〈Re t〉 deviates from its self-dual value. As mentioned
previously, raising tanβ does indeed increase the mass of
the lightest Higgs.
As we approach the minimal AMSB limit of p→ 1, the

relevant constraints change as scalar masses diminish. This
is displayed in Fig. 7. The Higgs mass limit is important
over much of the parameter space, requiring gravitino mass
scales well in excess of 50 TeV for 〈Re t〉 � 1 in order to
compensate for the rapidly diminishing stop masses. Note
that Figs.6 and 7 correctly reproduce our previous results
in the limit of 〈Re t〉 → 1. The light squarks in the p � 1
regime tend to contribute too much to the b→ sγ process
— a process that provided no such constraint in this region
of 〈Re t〉 in Fig. 6 due to the relatively large scalar masses
in those cases.
Nearly the entire region of the parameter space for

tanβ = 35 shown in Fig. 7 is ruled out by this constraint.
The remaining slender allowed region near 〈Re t〉 � 0.25
allowed by the experimental constraints is the result of
a relatively light charged Higgs that helps to cancel the
contributions from the light chargino. Here the scalars and
the gauginos are light— in particular, the gluino has a van-
ishing soft mass at the high scale near 〈Re t〉 � 0.3 when
δGS = 0 (see Fig. 8). This leads to a very small µ term value
in this narrow range, and consequently a small charged
Higgs mass. For example, as we move from 〈Re t〉 � 0.1

7 For a discussion of these points, in the context of distin-
guishing anomaly mediation from gauge mediation, see the
work of G. Kribs in [67].

to 〈Re t〉 = 0.3 along the line M3/2 = 15TeV in the right
panel of Fig. 6, the value of µ at the electroweak scale drops
from 1700 to 1100GeV due to the diminishing gluino mass.
However, in the right panel of Fig. 7 µ goes from 1700 to
380GeV over the same range, leading to a charged Higgs
mass of approximately the same value. Scalar masses are
around 200GeV at this point.
In the right panel of Fig. 7 with p→ 1 (light squarks)

and large tanβ (large couplings in the Higgs sector), there
also appears a zone excluded by too large a supersymmet-
ric contribution to the anomalous magnetic moment of the
muon (a black region labeled “µ”) due to the presence
of very light squarks and gauginos. This region is already
excluded, however, by multiple observables such as the
b→ sγ rate, the chargino mass and the Higgs mass bound.
The shaded region in the upper right of the tanβ = 35
plot in Fig. 7 is disfavored by the presence of CCB min-
ima deeper than the preferred electroweak vacuum. The
presence of such a region is due to the very large trilinear
couplings for these values of 〈Re t〉, which are larger than
the scalar masses when p� 1.
With regards to discovery at the LHC, this anomaly-

mediated-like scenario with the possibility of being non-
self-dual has some unique properties when compared with
the earlier sections. Like the previous scenarios, gluino dis-
covery prospects will be excellent except for the upper
right hand corner (with M3/2 > 25 TeV) of each plot. Ad-
ditionally, the mass of the lightest up squarks is below
2.5 TeV in both plots of Fig. 7, except for the same upper
right hand corner. The main unique feature, however, is
the possibility of detecting the lightest stau. On the left-
hand side of the left plot, the lightest stau mass is quite low,
dropping below 200GeV. At high values ofM3/2, this only
happens right at 〈Re t〉 � 0. However, for gravitino masses
below about 25 TeV, such accessible sleptons occur over
the entire allowed region to the left of the self-dual line.
For tanβ = 35, the gluino will be accessible in the allowed
region, but the lightest stau is not. Again due to the degen-
eracy of the lightest neutralino and lightest chargino, the
dotted line in both plots illustrates when a mass of 200GeV
occurs.
In comparison with Fig. 6, the mass of the lightest

Higgs is also in general heavier, except for the region just
to the left of the self-dual line for tanβ = 5. As expected,
increasing tanβ increases the mass of the lightest Higgs
and also the importance of the b→ sγ constraint. In this
simple moduli-dominated scenario, the phenomenology is
similar to that of anomaly mediation. The closer one ap-
proaches the minimal AMSB limit of p= 1, the more prob-
lematic the scenario becomes, particularly at large tanβ.
Other points in the PV-AMSB class have some areas of
phenomenological viability, though the chargino and Higgs
mass bounds can be quite constraining, particularly near
the self-dual point 〈Re t〉 = 1. All of these cases will be
unable to explain the cold dark matter content of the uni-
verse, at least in terms of thermal relic neutralinos.
Our study of the PV-AMSB scenario of Sect. 5.2 had

one effective parameter, the regularization weight p, apart
from the overall scale given by the gravitino mass M3/2.
This regularization weight controls the size of the scalar



498 P. Binétruy et al.: Phenomenological aspects of heterotic orbifold models at one loop

mass relative to the fundamental scaleM3/2, while the gau-
gino masses were fixed by their beta-function coefficients.
In the present section, the parameter space has been ex-
panded to allow for 〈Re t〉 	= 1, allowing the gauginomasses
to be varied relative to the scalars and gravitino massM3/2
in an independent way. Small, or even vanishing, gaugino
masses are now possible, as is the possibility of relatively
large gaugino masses as one moves far from the self-dual
point for the compactification moduli.
Despite this new degree of freedom, the parameter

space is still quite constrained. In particular, obtaining the
correct relic density for the neutralino LSP is impossible
in this framework, because of its extreme wino-like nature.
However, as we will see in the next section, the possibil-
ity of non-vanishing Green–Schwarz counterterm can open
a new region of parameter space completely in accord with
present experimental data.

5.4 The influence of the Green–Schwarz counterterm

In this section, we wish to introduce the possibility that
δGS 	= 0, as would typically be the case in realistic het-
erotic orbifold constructions. As we will see, this parame-
ter allows one to interpolate between regions with a phe-
nomenology similar to anomaly mediated models (specif-
ically the PV-AMSB scenario of (48)), and regions where
the phenomenology resembles that of the minimal super-
gravity paradigm.
In the conventions defined by the string threshold cor-

rection (28), the value of δGS is a negative integer between
0 and −90. For any given orbifold construction, the pre-
cise value of this coefficient can be worked out, and indeed
such an exercise has been performed for realistic Z3 models
already [70]. In the figures that follow we will treat this
variable as a continuous parameter. At values of the Kähler
modulus far from its self-dual point, where the Eisenstein
function is not negligible, the term in (47) proportional to
δGS can give rise to substantial (universal) contributions to
the gaugino masses. Thus points in parameter space with
large values of δGS and values of 〈Re t〉 far from unity will
be likely to have a pattern of gaugino masses similar to
mSUGRA — and hence are more likely to provide a viable
dark matter candidate than cases with δGS � 0. Further-
more, once |δGS| ∼

√
16π2 ∼ O(10), the gaugino masses

and scalar masses will be of approximately the same size.
This is very different from the hierarchical situation of the
previous sections.
Because of the difference of sign between the beta func-

tions ba of the standard model gauge groups,M3 has a par-
ticular behavior that differs from the other gauginomasses.
This in turn drives the phenomenology of the model, par-
ticularly through the gluino’s RG effects on the rest of
the superpartner spectrum. With a non-vanishing Green–
Schwarz coefficient the various gaugino masses will no
longer have zeros at the same value of Re t. In particular,
for certain combinations of 〈Re t〉 and δGS it is possible for
the gluino mass to vanish at the boundary condition scale
while the other gauginos have non-vanishing masses. These
combinations are shown in Fig. 8. For parameter choices

near these contours we might expect the phenomenologi-
cally unacceptable result of a gluino LSP. Even when the
gluino is not the LSP, its small value relative to other gau-
ginos may provide too little radiative correction to squark
masses and the Higgs mass bound may be difficult to sat-
isfy. On the other hand, a relatively light gluino is likely
to reduce the amount of fine-tuning required to obtain
MZ = 91.2GeV [71].
In Figs. 9, 10 and 11 we look at this model in the

(δGS,M3/2) plane for p= 0 and 〈Re t〉= 0.5, 〈Re t〉= 1.23
and 〈Re t〉 = 2, respectively. Beginning with the case
〈Re t〉 = 0.5 in Fig. 9, we see that the limit as δGS → 0
reproduces the cases studied in the previous section. In
particular, such models require very largeM3/2 in these re-
gions to satisfy the chargino and Higgs mass constraints.
This behavior is seen in all three of the 〈Re t〉 presented
here. A maximum value of |δGS| can, in general, be ob-
tained by requiring that the lightest neutralino be heavier
than the lightest stau. For any values of tanβ, the max-
imum value of |δGS| is determined by the requirement of
keeping the lightest neutralino as the LSP. The quantity
|δmaxGS | is smaller for higher tanβ, because the stau is in this
case lighter.
In between these disallowed regions, the increasing

values of the gaugino masses for fixed scalar mass, as the
Green–Schwarz coefficient increases in absolute value, re-
sults in smaller contributions to the b→ sγ branching ratio
and a smaller (in absolute value) anomalous magnetic mo-
ment of the muon. In Fig. 9 we have chosen a value of 〈Re t〉
near the value where gaugino masses vanish when δGS→ 0.
As is evident from the figure, gaugino masses are indeed
falling as this limit is reached. Note that, in this case, there
is no point in the plane for which the gluino is the LSP.
Concerning the relic density, it is negligible for small

values of the coefficient for the Green–Schwarz counter-
term, as we have seen previously: the neutralino is ex-
tremely Wino-like in nature and is nearly degenerate with
the lightest chargino. Almost all of the relic neutralinos
are depleted through coannihilation channels with the
charginos. When we increase |δGS|, however, we increase
the gaugino masses through the increased importance of
the G(t, t) terms in (47). This universal contribution can
compete with the (nonuniversal) anomaly-mediated term,
driving the gaugino mass terms Mi=1,2 far away from the
previous “degenerate” situation. The gaugino mass sector
then begins to look similar to that of mSUGRA and a more
bino-like LSP can develop, leading to an increased relic
density. Just as in the mSUGRA case, there continues to
be a region of stau coannihilation near the excluded stau-
LSP area. And — again, just as in mSUGRA — much of
the “bulk” area is ruled out by the chargino and Higgs mass
bounds, or the b→ sγ constraint.
LHC detectability with a non-zero Green–Schwarz

term is an especially interesting issue since non-zero δGS al-
lows the correct value of the neutralino relic density. Over
both plots in Fig. 9 the gluino will be, once again, de-
tectable. For tanβ = 5, there is also a region in the lower
left hand corner where the lightest stau has mass below
200GeV. It is important to note that this region overlaps
the region of correct relic density. Similar regions for the
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Fig. 9. Constraints on the moduli-dominated parameter space for tanβ = 5 (left) and tan β = 35 (right) with p= 0 and 〈Re t〉=
0.5. Constraints on the (M3/2, δGS) plane are given for µ> 0. Shaded regions to the left are ruled out by improper EWSB or a stau
LSP. The dark region in the lower right of the tan β = 35 plot labeled “µ” has too much supersymmetric contribution to (gµ−
2). The strip labeled “ Ω” has the cosmologically preferred neutralino relic density. Dashed contours of mh = 118 GeV (left) and
mh = 122 GeV (right) are also given

Fig. 10. Constraints on the moduli-dominated parameter space for tanβ = 5 (left) and tan β = 35 (right) with p= 0 and 〈Re t〉=
1.23. Constraints on the (M3/2, δGS) plane are given for µ> 0. The lightly shaded region in the center gives a gluino LSP. The thin
strip with acceptable thermal neutralino relic density is labeled “Ω.” Note the change in scale from Fig. 9

stau exist in the right plot, but they are excluded due to
the much tighter constraints from b→ sγ. The lightest up
squark has a mass below 2.5 TeV over all of the allowed
parameter space, except for the upper left hand corners
of both plots with M3/2 > 8 TeV. In both of these plots,
the lightest chargino and neutralino, though no longer de-
generate, are both above 250GeV in all viable areas of
parameter space, and so are not likely to be detectable.
It is worth emphasizing that the possibility of having

light staus and the correct relic density are two features
that scenarios presented here with δGS = 0 do not have. It
is also worth noting that allowing deviation from δGS = 0
tends to increase the mass of the lightest Higgs and the
lightest chargino, but tends to decrease the lightest stau
mass. Increasing tanβ has the same effect as has been com-
mented on before.

In Fig. 10, we investigate the same parameter space
for the case where 〈Re t〉 = 1.23. When multiple gaugino
condensates are utilized to stabilize the dilaton, with the
tree-level Kähler potential given byK(S, S) =− ln(S+S),
a modular invariant treatment of the resulting non-pertur-
bative potential for the moduli fields will lead to the con-
clusion that the auxiliary field for the dilaton FS must van-
ish in the vacuum. The remaining potential for the Kähler
moduli leads to their stabilization at this value [72]. Spe-
cific points in the space shown in Fig. 10 were singled out
for a more detailed study of their collider signatures in
a recent set of string-inspired “benchmark” models [73].
Here, a more complete survey of the parameter space is
possible.
In accordance with Fig. 8, we note a region centered

about δGS = −15, where the gluino is the LSP. Interest-
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Fig. 11. Constraints on the moduli-dominated parameter space for tanβ = 5 (left ) and tan β = 35 (right) with p= 0 and 〈Re t〉=
2.0. Constraints on the (M3/2, δGS) plane are given for µ > 0. The dark shaded regions on the left have a stau LSP. The tanβ = 35
plot also has a region with a gluino LSP. For tanβ = 5 the region labeled “Ω” has the cosmologically preferred relic density of
neutralinos. No such region exists for the higher tanβ plot. In that case the exclusion contours are due to (from bottom right to
upper left) CCB vacua, the chargino mass, too large SUSY contributions to (gµ−2), the Higgs mass limit and too large a b→ sγ
rate

ingly, this is precisely the region of values favored by semi-
realistic Z3 orbifold constructions [70]. To the right, as
the absolute value of the Green–Schwarz counterterm di-
minishes, the chargino mass bound is eventually reached.
The value 〈Re t〉= 1.23 is sufficiently close to the self-dual
value that the theory near δGS = 0 is anomaly mediated-
like in character: very large values of the gravitino mass
are generally required to achieve a sufficiently heavy light-
est chargino and lightest Higgs (note the difference in scale
between Figs. 9 and 10). For tanβ = 35, the Higgs mass
constraint is less important, being only relevant for low
gravitino masses near the gluino LSP region. In addition,
the LSP is predominantly wino-like on the right side of the
gluino LSP region, and the relic density of these neutrali-
nos is negligible.
As we move to larger absolute values of δGS, we in-

terpolate between this anomaly mediated region and an
mSUGRA-like region. For certain critical values of this pa-
rameter, the wino content of the LSP is sufficiently reduced
to result in the correct annihilation efficiency to produce
the cosmologically preferred relic abundance. This change
in the character of the LSP is the result of the increasing
importance of moduli contributions to the gaugino masses
(the first term in the gaugino mass parameter in (47) ver-
sus the anomaly mediated contributions (the last term in
that expression). The ability to achieve the right relic dens-
ity, independent of the scalar mass values, is a general
property of models with this sort of non-degeneracy among
gaugino mass parameters [46, 47].
At the LHC, the detection prospects are quite similar to

the earlier models with δGS = 0. The gluino will be visible
over all allowed parameter space. The lightest stau never
becomes light enough to be accessible. In both of these
plots, the mass of the lightest up squark is below 2.5 TeV
when M3/2 drops below 20TeV. For the right-hand plot,
the lightest chargino and neutralino are highly degenerate

and are lighter than 250GeV in all allowed parameter space
to the right of the ‘gluino LSP’ region.
We investigate the case 〈Re t〉= 2.0 in Fig. 11. The be-

havior at small tanβ is not dissimilar from the nominally
“dual” case of 〈Re t〉 = 0.5 in Fig. 9. The stau LSP con-
straint now arrives at much smaller values of the Green–
Schwarz coefficient. Again, the region with the promising
relic density of neutralinos is largely constrained by the
Higgs mass limit.
Applying the more stringent bounds from WMAP, the

cosmologically preferred regions again become thin lines
around Ωχh

2 = 0.1. In the left plot of Fig. 9, the only cos-
mologically preferred region is then the extreme lower left-
hand corner. In the right plot of Fig. 9, the edge of the
region labeled “Ω” closest to the “Stau LSP” region is still
preferred. For both plots in Fig. 10, WMAP singles out the
right-hand edge of the “Ω” region closest to the area with
a gluino LSP. In Fig. 11, the WMAP-preferred region is
along the left-hand edge of the “Ω” region; it runs approxi-
mately from the left edge of the plot atM3/2 = 1.35 TeV up
to the “Stau LSP” region atM3/2 = 2.4 TeV.
The parameter space for the higher tanβ regime is even

more tightly constrained (at least at these relatively low
values of the gravitino mass). We again see a region of
gluino LSP — a narrower region at lower absolute values
of δGS consistent with Fig. 8. At the bottom of the plot the
values are ruled out by the presence of CCB vacua, while
the region to the left has a stau LSP. The light charginos for
this value of gravitino mass lead to large contributions to
the muon anomalous magnetic moment (the black region
labeled “µ”). Finally, all but the uppermost corner of the
space is ruled out by the Higgs mass limit and the upper
bound on BR(b→ sγ).
Now turning our attention towards observability at the

LHC, in both plots the gluino and lightest up squark are
below 1 TeV over all of the allowed parameter space. In
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Fig. 12. Constraints on the moduli-dominated parameter space for tanβ = 5 (left) and tanβ = 35 (right) with p= 0 andM3/2 =
10 TeV. Constraints on the (〈Re t〉 , δGS) plane are given for µ > 0. The upper light shaded region has improper EWSB, while the
lower light shaded regions on either side of 〈Re t〉= 1 have a stau LSP. All collider constraints have been combined in the dark
shaded region to make the preferred relic density strip easier to distinguish

addition, the second lightest neutralino is also quite light
by LHC observability standards (below 250GeV) around
the ‘Mh’ constraint contour (with a width of approxi-
mately ∆M3/2 = 1TeV). The lightest chargino and neu-
tralino will be likely to be detectable in large sections of the
parameter space of the left plot. The lightest neutralino is
lighter than 250GeV in all of the allowed parameter space
for tanβ = 5, except for the upper left hand corner start-
ing at M3/2 = 4TeV. The chargino, being a little heavier,
has a mass below 250GeV everywhere, except for the upper
left hand corner starting atM3/2 = 3TeV. For tanβ = 35,
the change in the Higgs and b→ sγ constraint has al-
ready ruled out all of the parameter space with possibly-
detectable lightest neutralinos and charginos.
We combine all of these observational and theoretical

constraints to explore the relation between δGS and 〈Re t〉
in Fig. 12. We plot the allowed parameter space in the
(δGS, 〈Re t〉) plane in a similar fashion to Fig. 8 for the spe-
cific gravitino mass ofM3/2 = 10TeV. On either side of the
self-dual point at large negative values of δGS, the stau is
the LSP. Near these regions, there is a strip of preferred
neutralino relic density. The area at small values of |δGS|
and near 〈Re t〉= 1 is ruled out by improper EWSB. Here,
there is again a small strip of preferred relic density, though
this is within the region ruled out by the Higgs mass,
chargino mass or b→ sγ constraint. In the interior there
continues to be viable parameter space, including points
with acceptable relic neutralino densities. Once again, if
we had instead applied the WMAP constraints to the dark
matter relic density, the areas would have collapsed to
thin strips aroundΩχh

2 = 0.1. For the plots in Fig. 12, this
area is the edge of the dark shaded region closest to the
“EWSB” region.

5.5 The generalized dilaton domination case

If we now consider the other extreme case (θ = π/2), the
general features are somewhat different. Referring to the

soft terms of (52), we can clearly see that the soft scalar
mass terms will be roughly dominated by the gravitino
mass scale (up to radiative corrections). We anticipate,
therefore, that the relevant gravitino mass scale will be ap-
proximately one order of magnitude lower than the one
necessary in the moduli-dominated case because of the ab-
sence of the loop suppression factors on the scalar masses.
The gaugino mass soft supersymmetry breaking terms will

be determined by the dilaton auxiliary field vev 〈FS 〉.
In the case where nonperturbative corrections to the

dilaton Kähler potential are imagined, the minimum of the
combined (modular invariant) dilaton/Kähler moduli po-

tential now occurs at 〈FS 〉 	= 0 and compactification mod-

uli are stabilized at self-dual points where 〈FT 〉= 0. As de-
scribed in Sect. 3.2, the requirement of vanishing vacuum
energy naturally leads to a suppression of this auxiliary
field vev relative to the auxiliary field of the supergravity
multiplet. Thus, the two contributions to the gaugino mass
in (52) each involve a loop suppression factor (unlike the
scalarmasses) and the dilaton and conformal anomaly con-
tributions are comparable. Indeed, the beta-function coef-
ficients ba of the standard model gauge groups are of the

order of 10−2. Moreover, the FS term will be driven by b+,
the largest beta-function coefficient among the condens-
ing gauge groups of the hidden sector, from (51) and (49).

In fact, if we look in more detail at the expression for FS

in (51), it is apparent that for not too large values of b+ we

can consider that FS has a linear evolution as a function of
that parameter. Increasing b+ has a direct consequence on
the values of the gaugino breaking terms, while increasing
M3/2 has direct consequences on the general size of all soft
breaking terms — in particular soft scalar masses. We can
consider the effect of the parameter b+ as a “fine structure”
on top of the gross feature of a hierarchy between scalars
and gauginos in this regime.
The general features of this situation are shown in

Fig. 13. When the suppression of the gaugino masses is
large from small values of b+ (small anp), the gaugino sec-
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tor looks increasingly like that of anomaly-mediation. This
is true of any value of tanβ. As this value is increased, the
wino content of the LSP diminishes and we approach the
overwhelmingly bino-like LSP of mSUGRA. However, the
value of b+ cannot increase without limit. As we are consid-
ering the weakly coupled E8×E8 heterotic string, we can-
not imagine a condensing group larger than the complete
E8 of the hidden sector, for which bE8 = 90/16π

2 = 0.57.
It is more likely that the same Wilson-line mechanism that
breaks the observable sector gauge group to the product
of sub-groups at the compactification scale also breaks the
hidden sector group as well. Thus, a more typical range for
this parameter might be b+ ≤ 15/16π2 = 0.095, where this
value corresponds to a pure Yang–Mills sector of SU(5).
For this range of the condensing group beta-function,

only small values of tanβ are consistent with the stringent
demands of electroweak symmetry breaking. This fact was
observed in this model some time ago [74], but it is here
displayed explicitly in Fig. 13. The large regions marked
“EWSB” in this figure have µ̄2 < 0. This is a manifes-
tation of the “focus point”, or hyperbolic nature of this
model [65]: the scalar masses are generally much larger
than gaugino masses throughout the parameter space. The
light gluinos imply that third generation squarks must
have large masses at the boundary condition scale to en-
sure a sufficiently heavy Higgs mass. ThusM3/2 >∼ 4 TeV is
needed in the tanβ = 5 case andM3/2 >∼ 1.3 TeV is needed
in the tanβ = 35 case.
The very large (and nearly universal) scalar masses

will imply heavy sleptons at the electroweak scale. There-
fore, both direct neutralino annihilation through slepton
exchange and τ̃1/χ

0
1 coannihilation will be ineffective in re-

ducing the relic neutralino density in the early universe.
Nevertheless, acceptable relic densities are possible in this
model, without the need for resonant annihilation through
a heavy Higgs eigenstate. The cosmologically preferred re-
gion is the shaded strip labeled “Ω” in Fig. 13. Between
this strip and the region ruled out by improper EWSB, the
relic density is below the preferred amount. In this region,
the LSP has a sufficiently large wino content to annihilate

Fig. 13. Constraints on the dilaton-dominated parameter space for tanβ = 5 (left) and tan β = 35 (right) with. Constraints on
the (M3/2, b+) plane are given for µ > 0

efficiently. Below the marked strip the LSP is bino-like and
the relic density is too large. It should be noted again that
within the context of heterotic strings on an orbifold, b+ is
limited to b+ ≤ 0.57. For both plots in Fig. 13, application
of the WMAP result singles out the edge of the “Ω” region
closest to the “EWSB” region.
Again with an eye towards LHC prospects, we dis-

cover that the dilaton-dominated parameter space looks
quite like the moduli-dominated scenario without a Green–
Schwarz term: the gluino will be visible, the sleptons will
not. However, the lightest neutralino and chargino are both
light in the lower left-hand corner of the plot, starting at
around b+ = 0.2. Also, the second lightest neutralino is
again light in the lower left-hand corner of the left plot, but
about 100GeV heavier than the lightest neutralino. For the
right-hand plot, the lightest neutralino has a mass below
250GeV everywhere, except for the upper right-hand cor-
ner of the plot aboveM3/2 = 3.0 TeV. The lightest chargino
is also light almost everywhere, but not in a region start-
ing at M3/2 = 2TeV. The second lightest neutralino and
chargino are light over regions similar to the lightest neu-
tralino and chargino, but there masses are approximately
100GeV heavier than their lighter cousin for a given point
in parameter space.
In comparing the dilaton dominated scenario to the ear-

lier sections, we can see that this is only the second option
available (other than a non-zero Green–Schwarz term) to
achieve the correct relic density. It is also the only scenario
studied here that can realize the “focus point” behavior.
This is evidenced by the region ruled out by EWSB consid-
erations that exists right next to the region ruled out by the
chargino mass limit. As the EWSB region is approached
from the allowed region, the value of the µ parameter drops
rapidly. First the value drops low enough so that the light-
est chargino is mainly higgsino and then becomes ruled out
by current experiment. After that, µ2 eventually drops be-
low zero, signaling improper EWSB. Note, however, that in
the dilaton-dominated scenario, no region exists with staus
light enough for LHC detection. This is in contrast to what
happens when δGS deviates from zero.
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6 Conclusion and perspectives

Even within the restricted context of the weakly-coupled
heterotic string compactified on an orbifold, the phe-
nomenology of such supergravity effective theories is far
richer and varied than that of the standard “minimal” su-
pergravity approach.While our current indirect knowledge
on the nature of supersymmetry already constrains these
models significantly, there still exist large regions of pa-
rameter space for all the cases studied here — even for low
values of tanβ. We anticipate that future measurements of,
or limits on, superpartner masses and kinematic distribu-
tions will constrain the parameters of these models further.
So too will future cosmological or astrophysical measure-
ments. In fact, these sorts of measurements form a useful
complementarity that will be crucial in unraveling the na-
ture of supersymmetry breaking and transmission in such
models in the manner begun here. Future studies of string-
based models should focus on extending this initial survey
to true collider signatures in both hadron and lepton ma-
chines, as well as computing event rates for astrophysical
processes.
Our analysis in this paper was somewhat cursory —

we consider the constraints that arise principally from the
chargino and Higgs searches at LEP, as well as the meas-
urement of the branching ratio for b→ sγ in the minimal
flavor violation scenario. We have indicated, where appli-
cable, the region that seems to be favored by cosmologi-
cal observations of dark matter relic densities. Interpreting
this observation as a constraint on a model implies the
assumption that the dark matter is the result of thermal
processes in the early universe and is composed entirely of
relic neutralino LSPs. In string models many other dark
matter candidates are known to exist: axions, superheavy
exotic string states, hidden sector gauge and matter con-
densates, etc., so care should be exercised in applying the
cosmological bounds. We have kept the range that we show
within the wider region 0.1≤Ωχh2 ≤ 0.3, though we have
commented on the far more restrictive result from the re-
cent WMAP experiment. We have also used only the most
conservative possible interpretation of the measurement of
the muon anomalous magnetic moment so as to not prema-
turely prejudice one model versus another.
Furthermore, we have also discussed the possibility of

particle detection at LHC. In quite general terms, we find
that the lightest neutral Higgs and the gluino will be de-
tectable over almost all of the parameter space allowed by
the aforementioned constraints. It is also quite likely that
the lighter neutralinos and charginos will be detectable,
though more definitive statements go beyond the scope of
this paper. In many scenarios, predominantly with higher
tanβ, the lightest up squark is also likely to be observable.
We have found that the strongest discriminator between
different loop-dominated heterotic orbifold scenarios is the
detectability of the lightest stau. We have found that the
lightest stau is only light enough to be detectable at the
LHC for low values of tanβ (around 5). For light staus, it is
also required that the compactification moduli be smaller
than self-dual (〈Re t〉 < 1) or that there exist a significant
Green–Schwarz term (δGS <−60). We thus conclude that

within the context of these loop-dominated heterotic orb-
ifold models, detection of the lightest stau at the LHC pro-
vides a signature of either spontaneous breaking of modu-
lar invariance or a Green–Schwarz counterterm of a size
in conflict with explicit calculations of realistic Z3 orbifold
models [70].
Despite the uncertainties that must be borne in mind

in such an analysis arising from the computational tools
employed (e.g. the choice of quark pole masses utilized, un-
certainties in the determination of µ̄ at large tanβ, etc.),
some general statements can certainly be made. Among
these is the observation that explicit models of moduli sta-
bilization utilizing field-theoretic methods tend to predict
that at least some sector of the theory obtains soft su-
persymmetry breaking terms only at the one-loop level.
This is especially true of the gaugino sector. Furthermore,
this suppression leads to the general requirement that the
gravitino be relatively heavy in these cases — perhaps alle-
viating the cosmological problems so often associated with
models that contain gravitinos.
A further issue to consider is the importance of param-

eters relating to the way in which the supergravity theory
is regulated. As a non-renormalizable theory we anticipate
that the effective supergravity Lagrangian will reflect the
UV theory that completes it and cuts off its otherwise di-
vergent behavior at one loop. By choosing to regulate the
theory with a manifestly supersymmetric regularization
scheme, here using Pauli–Villars superfields, we hope that
the regularization can more readily be matched in the fu-
ture to the underlying string theory at higher genus. The
requirements of divergence cancellation and modular in-
variance preservation highly constrict the nature of these
regulating fields, leaving undetermined only the modular
weights of fields which generate the supersymmetric PV
mass terms. These parameters appear, then, as a kind
of stringy threshold correction to the (presumably string-
scale) PV masses. This form is consistent with previous
calculations of observable quantities at the string one-loop
level. If this uncertainty does indeed reflect the underlying
physics of massive string modes, then future experiments,
by helping to pin down these otherwise free parameters,
will be instrumental in probing physics at the string scale.
Apart from these PV-weights, parameters that are re-

lated to the orbifold can have a large impact on these broad
features. This is a welcome result — implying that experi-
mental data can indeed probe the nature of the underly-
ing theory within a class of models. For example, in cases
where supersymmetry breaking is transmitted predomin-
antly by the moduli associated with compactification, the
relative sign of terms proportional to their auxiliary field
and that of the conformal anomaly can, in principle, be
measured. This parameter, in turn, is related to the spon-
taneous breakdown of modular invariance that may occur
in such models.
The phenomenology, even in the simple initial approach

taken here, is neither that of minimal supergravity nor
minimal anomaly mediation, but is often a hybrid of the
two. This makes a detailed study of collider signatures all
the more urgent, as search strategies are often based on
one or the other of these paradigms. Given that the era of
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experimental supersymmetry may well be at hand — and
that weakly coupled heterotic strings still represent the
best motivated string-based approach to understanding
supersymmetry and its breaking in the low-energy world
— the time is right for this exciting undertaking.
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